New star discrepancy bounds for -nets and -sequences

被引:0
作者
Faure, Henri [1 ]
Kritzer, Peter [2 ]
机构
[1] Univ Aix Marseille, Inst Math Luminy CNRS, F-13288 Marseille 09, France
[2] Univ Linz, Inst Finanzmath, A-4040 Linz, Austria
来源
MONATSHEFTE FUR MATHEMATIK | 2013年 / 172卷 / 01期
基金
奥地利科学基金会;
关键词
Discrepancy; (t; m; s)-net; s)-sequence; Uniform distribution modulo one; 2; DIMENSIONS; (T; S)-SEQUENCES; HAMMERSLEY; SETS;
D O I
10.1007/s00605-012-0470-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we derive new general upper bounds on the star discrepancy of -nets and -sequences. These kinds of point sets are among the most widely used in quasi-Monte Carlo methods for numerical integration. By our new results, we improve on previous discrepancy bounds and prove a conjecture stated by the second author in an earlier paper.
引用
收藏
页码:55 / 75
页数:21
相关论文
共 30 条
[1]  
[Anonymous], 1974, PURE APPL MATH
[2]  
Atanassov E.I., 2004, MATH BALKANICA, V18, P15
[3]   DECREASE OF THE DISCREPANCY OF ANY SERIES ON T [J].
BEJIAN, R .
ACTA ARITHMETICA, 1982, 41 (02) :185-202
[4]   On the Small Ball Inequality in all dimensions [J].
Bilyk, Dmitriy ;
Lacey, Michael T. ;
Vagharshakyan, Armen .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (09) :2470-2502
[5]  
DECLERCK L, 1986, MONATSH MATH, V101, P261, DOI 10.1007/BF01559390
[6]   Star discrepancy estimates for digital (t, m, 2)-nets and digital (t, 2)-sequences over Z2 [J].
Dick, J ;
Kritzer, P .
ACTA MATHEMATICA HUNGARICA, 2005, 109 (03) :239-254
[7]  
Dick J., 2010, Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration
[8]  
Dick J, 2006, MONTE CARLO METHODS, V12, P1
[9]   ON THE STAR-DISCREPANCY OF GENERALIZED HAMMERSLEY SEQUENCES IN 2 DIMENSIONS [J].
FAURE, H .
MONATSHEFTE FUR MATHEMATIK, 1986, 101 (04) :291-300
[10]   DISCREPANCY OF SEQUENCES ASSOCIATED WITH A NUMERATION SYSTEM (IN S-DIMENSION) [J].
FAURE, H .
ACTA ARITHMETICA, 1982, 41 (04) :337-351