Optical tsunamis: shoaling of shallow water rogue waves in nonlinear fibers with normal dispersion

被引:21
作者
Wabnitz, Stefan [1 ]
机构
[1] Univ Brescia, Dipartimento Ingn Informaz, I-25123 Brescia, Italy
关键词
nonlinear optics; fluid dynamics; optical fibers; optical rogue waves; NONRETURN-TO-ZERO; SCHRODINGER-EQUATION; WHITHAM EQUATIONS; TRAINS;
D O I
10.1088/2040-8978/15/6/064002
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In analogy with ocean waves running up towards the beach, shoaling of pre-chirped optical pulses may occur in the normal group-velocity dispersion regime of optical fibers. We present exact Riemann wave solutions of the optical shallow water equations and show that they agree remarkably well with the numerical solutions of the nonlinear Schrodinger equation, at least up to the point where a vertical pulse front develops. We also reveal that extreme wave events or optical tsunamis may be generated in dispersion tapered fibers in the presence of higher-order dispersion.
引用
收藏
页数:8
相关论文
共 24 条
[1]   Editorial - Introductory remarks on "Discussion & Debate: Rogue Waves - Towards a Unifying Concept?" [J].
Akhmediev, N. ;
Pelinovsky, E. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 185 (01) :1-4
[2]  
Akhmediev N., 1986, TEOR MAT FIZ, V69, P189
[3]   MODULATION INSTABILITY AND PERIODIC-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
KORNEEV, VI .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (02) :1089-1093
[4]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[5]   On the Whitham equations for the defocusing nonlinear Schrodinger equation with step initial data [J].
Biondini, G. ;
Kodama, Y. .
JOURNAL OF NONLINEAR SCIENCE, 2006, 16 (05) :435-481
[6]   Rogue waves in nonlinear hyperbolic systems (shallow-water framework) [J].
Didenkulova, Ira ;
Pelinovsky, Efim .
NONLINEARITY, 2011, 24 (03) :R1-R18
[7]  
Dysthe K, 2008, ANNU REV FLUID MECH, V40, P287, DOI [10.1146/annurev.fluid.40.111406.102203, 10.1146/annurev.fluid.40.111406.102]
[8]   The Peregrine soliton in nonlinear fibre optics [J].
Kibler, B. ;
Fatome, J. ;
Finot, C. ;
Millot, G. ;
Dias, F. ;
Genty, G. ;
Akhmediev, N. ;
Dudley, J. M. .
NATURE PHYSICS, 2010, 6 (10) :790-795
[9]   ANALYTICAL THEORY OF GUIDING-CENTER NONRETURN-TO-ZERO AND RETURN-TO-ZERO SIGNAL TRANSMISSION IN NORMALLY DISPERSIVE NONLINEAR-OPTICAL FIBERS [J].
KODAMA, Y ;
WABNITZ, S .
OPTICS LETTERS, 1995, 20 (22) :2291-2293
[10]   Control of nonreturn-to-zero signal distortion by nonlinear gain [J].
Kodama, Y ;
Wabnitz, S ;
Tanaka, K .
OPTICS LETTERS, 1996, 21 (10) :719-721