Electrocatalytic oxidation and determination of insulin at nickel oxide nanoparticles-multiwalled carbon nanotube modified screen printed electrode

被引:104
作者
Rafiee, Banafsheh [1 ]
Fakhari, Ali Reza [1 ]
机构
[1] Shahid Beheshti Univ, Fac Sci, Dept Chem, GC, Tehran, Iran
关键词
Insulin; Nickel oxide nanoparticles; Amperometric detection; Electrodeposition; Screen printed electrode; AMPEROMETRIC DETERMINATION; METHANOL ELECTROOXIDATION; PICOMOLAR DETECTION; COMPLEX; ELECTROCHEMISTRY; POWDER;
D O I
10.1016/j.bios.2013.01.037
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Nickel oxide nanoparticles modified nafion-multiwalled carbon nanotubes screen printed electrode (NiONPs/Nafion-MWCNTs/SPE) were prepared using pulsed electrodeposition of NiONPs on the MWCNTs/SPE surface. The size, distribution and structure of the NiONPs/Nafion-MWCNTs were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD) and also the results show that NiO nanoparticles were homogeneously electrodeposited on the surfaces of MWCNTs. Also, the electrochemical behavior of NiONPs/Nafion-MWCNTs composites in aqueous alkaline solutions of insulin was studied by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS). It was found that the prepared nanoparticles have excellent electrocatalytic activity towards insulin oxidation due to special properties of NiO nanoparticles. Cyclic voltammetric studies showed that the NiONPs/Nafion-MWCNTs film modified SPE, lowers the overpotentials and improves electrochemical behavior of insulin oxidation, as compared to the bare SPE. Amperometty was also used to evaluate the analytical performance of modified electrode in the quantitation of insulin. Excellent analytical features, including high sensitivity (1.83 mu A/mu M), low detection limit (6.1 nM) and satisfactory dynamic range (20.0-260.0 nM), were achieved under optimized conditions. Moreover, these sensors show good repeatability and a high stability after a while or successive potential cycling. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:130 / 135
页数:6
相关论文
共 43 条
[1]   Carbohydrates electrocatalytic oxidation using CNT-NiCo-oxide modified electrodes [J].
Arvinte, Adina ;
Sesay, Adama-Marie ;
Virtanen, Vesa .
TALANTA, 2011, 84 (01) :180-186
[2]   Electrocatalytic oxidation and determination of insulin at CNT-nickel-cobalt oxide modified electrode [J].
Arvinte, Adina ;
Westermann, A. Caroline ;
Sesay, Adama Marie ;
Virtanen, Vesa .
SENSORS AND ACTUATORS B-CHEMICAL, 2010, 150 (02) :756-763
[3]   Electrocatalytic oxidation of methanol on the nickel-cobalt modified glassy carbon electrode in alkaline medium [J].
Asgari, Mehdi ;
Maragheh, Mohammad Ghannadi ;
Davarkhah, Reza ;
Lohrasbi, Elaheh ;
Golikand, Ahmad Nozad .
ELECTROCHIMICA ACTA, 2012, 59 :284-289
[4]   Methanol Electrooxidation on the Nickel Oxide Nanoparticles/Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode Prepared Using Pulsed Electrodeposition [J].
Asgari, Mehdi ;
Maragheh, Mohammad Ghannadi ;
Davarkhah, Reza ;
Lohrasbi, Elaheh .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (12) :K225-K229
[5]  
Bard AJ., 1980, ELECTROCHEMICAL METH
[6]  
Barsoukov E, 2005, IMPEDANCE SPECTROSCOPY: THEORY, EXPERIMENT, AND APPLICATIONS, 2ND EDITION, pXII
[7]   ELECTROCATALYTIC OXIDATION AND LIQUID-CHROMATOGRAPHIC DETECTION OF ALIPHATIC-ALCOHOLS AT A NICKEL-BASED GLASSY-CARBON MODIFIED ELECTRODE [J].
CASELLA, IG ;
CATALDI, TRI ;
SALVI, AM ;
DESIMONI, E .
ANALYTICAL CHEMISTRY, 1993, 65 (21) :3143-3150
[8]   Carbon electrodes modified with ruthenium metallodendrimer multilayers for the mediated oxidation of methionine and insulin at physiological pH [J].
Cheng, L ;
Pacey, GE ;
Cox, JA .
ANALYTICAL CHEMISTRY, 2001, 73 (22) :5607-5610
[9]   Catalytic oxidation of methanol on a glassy carbon electrode electrochemically modified by a conductive Ni-II-curcumin film [J].
Ciszewski, A .
ELECTROANALYSIS, 1995, 7 (12) :1132-1135
[10]   FLOW-INJECTION AMPEROMETRIC DETERMINATION OF INSULIN BASED UPON ITS OXIDATION AT A MODIFIED ELECTRODE [J].
COX, JA ;
GRAY, TJ .
ANALYTICAL CHEMISTRY, 1989, 61 (21) :2462-2464