Emergent dynamics of Cucker-Smale flocking particles in a random environment

被引:30
作者
Ha, Seung-Yeal [1 ,2 ,3 ]
Jeong, Jiin [4 ]
Noh, Se Eun [5 ]
Xiao, Qinghua [6 ]
Zhang, Xiongtao [4 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Seoul Natl Univ, Inst Math, Seoul 151747, South Korea
[3] Korea Inst Adv Study, Sch Math, Seoul 130722, South Korea
[4] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[5] Myongji Univ, Dept Math, Yongin 449728, South Korea
[6] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
基金
中国国家自然科学基金;
关键词
Cucker-Smale-Fokker-Planck equation; Degenerate diffusion; Flocking; Mean-field limit; MEAN-FIELD LIMIT; FOKKER-PLANCK EQUATION; GLOBAL EXISTENCE; ASYMPTOTIC FLOCKING; COLLECTIVE MOTION; MODEL; SYSTEM; DIMENSIONS; SYNCHRONIZATION; FORCES;
D O I
10.1016/j.jde.2016.11.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new kinetic Cucker-Smale-Fokker-Planck (CS-FP) type equation with a degenerate diffusion, which describes the dynamics for an ensemble of infinitely many Cucker-Smale particles in a random environment. The asymptotic dynamics of the CS-FP equation exhibits a threshold-like phenomenon depending on the relative strength between the coupling strength and the noise strength. In the small coupling regime, the noise effect becomes dominant, which induces the velocity variance to increase to infinity exponentially fast. In contrast, the velocity alignment effect is strong in the large coupling regime, and the velocity variance tends to zero exponentially fast. We present the global existence of classical solutions to the CS-FP equation for a sufficiently smooth initial datum without smallness in its size. For the kinetic CS-FP equation with a metric dependent communication weight, we provide a uniform-in-time mean-field limit from the stochastic CS-model to the kinetic CS-FP equation without convergence rate. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:2554 / 2591
页数:38
相关论文
共 48 条
[41]   Heterophilious Dynamics Enhances Consensus [J].
Motsch, Sebastien ;
Tadmor, Eitan .
SIAM REVIEW, 2014, 56 (04) :577-621
[42]   A New Model for Self-organized Dynamics and Its Flocking Behavior [J].
Motsch, Sebastien ;
Tadmor, Eitan .
JOURNAL OF STATISTICAL PHYSICS, 2011, 144 (05) :923-947
[43]  
Oksendal B.K., 1995, Stochastic Differential Equations: An Introduction with Applications, V4th
[44]  
Ono K, 2000, DISCRET CONTIN DYN S, V6, P751
[45]   Oscillator models and collective motion [J].
Paley, Derek A. ;
Leonard, Naomi Ehrich ;
Sepulchre, Rodolphe ;
Gruenbaum, Daniel .
IEEE CONTROL SYSTEMS MAGAZINE, 2007, 27 (04) :89-105
[46]   Extension of the Cucker-Smale Control Law to Space Flight Formations [J].
Perea, Laura ;
Gomez, Gerard ;
Elosegui, Pedro .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2009, 32 (02) :527-537
[48]   NOVEL TYPE OF PHASE-TRANSITION IN A SYSTEM OF SELF-DRIVEN PARTICLES [J].
VICSEK, T ;
CZIROK, A ;
BENJACOB, E ;
COHEN, I ;
SHOCHET, O .
PHYSICAL REVIEW LETTERS, 1995, 75 (06) :1226-1229