Emergent dynamics of Cucker-Smale flocking particles in a random environment

被引:30
作者
Ha, Seung-Yeal [1 ,2 ,3 ]
Jeong, Jiin [4 ]
Noh, Se Eun [5 ]
Xiao, Qinghua [6 ]
Zhang, Xiongtao [4 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Seoul Natl Univ, Inst Math, Seoul 151747, South Korea
[3] Korea Inst Adv Study, Sch Math, Seoul 130722, South Korea
[4] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[5] Myongji Univ, Dept Math, Yongin 449728, South Korea
[6] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
基金
中国国家自然科学基金;
关键词
Cucker-Smale-Fokker-Planck equation; Degenerate diffusion; Flocking; Mean-field limit; MEAN-FIELD LIMIT; FOKKER-PLANCK EQUATION; GLOBAL EXISTENCE; ASYMPTOTIC FLOCKING; COLLECTIVE MOTION; MODEL; SYSTEM; DIMENSIONS; SYNCHRONIZATION; FORCES;
D O I
10.1016/j.jde.2016.11.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new kinetic Cucker-Smale-Fokker-Planck (CS-FP) type equation with a degenerate diffusion, which describes the dynamics for an ensemble of infinitely many Cucker-Smale particles in a random environment. The asymptotic dynamics of the CS-FP equation exhibits a threshold-like phenomenon depending on the relative strength between the coupling strength and the noise strength. In the small coupling regime, the noise effect becomes dominant, which induces the velocity variance to increase to infinity exponentially fast. In contrast, the velocity alignment effect is strong in the large coupling regime, and the velocity variance tends to zero exponentially fast. We present the global existence of classical solutions to the CS-FP equation for a sufficiently smooth initial datum without smallness in its size. For the kinetic CS-FP equation with a metric dependent communication weight, we provide a uniform-in-time mean-field limit from the stochastic CS-model to the kinetic CS-FP equation without convergence rate. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:2554 / 2591
页数:38
相关论文
共 48 条
[11]   ASYMPTOTIC FLOCKING DYNAMICS FOR THE KINETIC CUCKER-SMALE MODEL [J].
Carrillo, J. A. ;
Fornasier, M. ;
Rosado, J. ;
Toscani, G. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (01) :218-236
[12]   On the analysis of a coupled kinetic-fluid model with local alignment forces [J].
Carrillo, Jose A. ;
Choi, Young-Pil ;
Karper, Trygve K. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (02) :273-307
[13]  
Carrillo JA, 2010, MODEL SIMUL SCI ENG, P297, DOI 10.1007/978-0-8176-4946-3_12
[14]   Emergence of bi-cluster flocking for the Cucker-Smale model [J].
Cho, Junghee ;
Ha, Seung-Yeal ;
Huang, Feimin ;
Jin, Chunyin ;
Ko, Dongnam .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (06) :1191-1218
[15]  
Choi Y.-P., ACTIVE PART IN PRESS
[16]   Global existence of weak and strong solutions to Cucker-Smale-Navier-Stokes equations in R2 [J].
Choi, Young-Pi ;
Lee, Jihoon .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 27 :158-182
[17]  
Cucker F., 2008, MATHS ACTION, V1, P1
[18]   Flocking in noisy environments [J].
Cucker, Felipe ;
Mordecki, Ernesto .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 89 (03) :278-296
[19]   On the mathematics of emergence [J].
Cucker, Felipe ;
Smale, Steve .
JAPANESE JOURNAL OF MATHEMATICS, 2007, 2 (01) :197-227
[20]   Emergent behavior in flocks [J].
Cucker, Felipe ;
Smale, Steve .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (05) :852-862