Emergent dynamics of Cucker-Smale flocking particles in a random environment

被引:30
作者
Ha, Seung-Yeal [1 ,2 ,3 ]
Jeong, Jiin [4 ]
Noh, Se Eun [5 ]
Xiao, Qinghua [6 ]
Zhang, Xiongtao [4 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Seoul Natl Univ, Inst Math, Seoul 151747, South Korea
[3] Korea Inst Adv Study, Sch Math, Seoul 130722, South Korea
[4] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[5] Myongji Univ, Dept Math, Yongin 449728, South Korea
[6] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
基金
中国国家自然科学基金;
关键词
Cucker-Smale-Fokker-Planck equation; Degenerate diffusion; Flocking; Mean-field limit; MEAN-FIELD LIMIT; FOKKER-PLANCK EQUATION; GLOBAL EXISTENCE; ASYMPTOTIC FLOCKING; COLLECTIVE MOTION; MODEL; SYSTEM; DIMENSIONS; SYNCHRONIZATION; FORCES;
D O I
10.1016/j.jde.2016.11.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new kinetic Cucker-Smale-Fokker-Planck (CS-FP) type equation with a degenerate diffusion, which describes the dynamics for an ensemble of infinitely many Cucker-Smale particles in a random environment. The asymptotic dynamics of the CS-FP equation exhibits a threshold-like phenomenon depending on the relative strength between the coupling strength and the noise strength. In the small coupling regime, the noise effect becomes dominant, which induces the velocity variance to increase to infinity exponentially fast. In contrast, the velocity alignment effect is strong in the large coupling regime, and the velocity variance tends to zero exponentially fast. We present the global existence of classical solutions to the CS-FP equation for a sufficiently smooth initial datum without smallness in its size. For the kinetic CS-FP equation with a metric dependent communication weight, we provide a uniform-in-time mean-field limit from the stochastic CS-model to the kinetic CS-FP equation without convergence rate. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:2554 / 2591
页数:38
相关论文
共 48 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]  
Aim S., 2010, J MATH PHYS, V51
[3]  
[Anonymous], 1991, Ecole d'Ete de Probabilites de Saint-Flour XIX
[4]  
[Anonymous], 2000, PROBABILITY STAT
[5]  
[Anonymous], SIMPLE CONTROL LAW U
[6]  
[Anonymous], NONLINEARITY
[7]   ASYMPTOTIC FLOCKING DYNAMICS OF CUCKER-SMALE PARTICLES IMMERSED IN COMPRESSIBLE FLUIDS [J].
Bae, Hyeong-Ohk ;
Choi, Young-Pil ;
Ha, Seung-Yeal ;
Kang, Moon-Jin .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (11) :4419-4458
[8]   STOCHASTIC MEAN-FIELD LIMIT: NON-LIPSCHITZ FORCES AND SWARMING [J].
Bolley, Francois ;
Canizo, Jose A. ;
Carrillo, Jose A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (11) :2179-2210
[9]   Mean-field limit for the stochastic Vicsek model [J].
Bolley, Francois ;
Canizo, Jose A. ;
Carrillo, Jose A. .
APPLIED MATHEMATICS LETTERS, 2012, 25 (03) :339-343
[10]   EXISTENCE AND UNIQUENESS OF A GLOBAL SMOOTH SOLUTION FOR THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM IN 3 DIMENSIONS [J].
BOUCHUT, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 111 (01) :239-258