GYROSONICS: SIGNATURE ANALYSIS AND REDUCED-ORDER MODELS

被引:0
|
作者
Mahapatra, D. Roy [1 ]
Chakraborty, N. [1 ]
Bandopadhyay, S. [2 ]
Balachandran, B. [3 ]
机构
[1] Indian Inst Sci, Dept Aerosp Engn, Bangalore 560012, Karnataka, India
[2] WINGARD Inst Brain Res, Kolkata 700012, India
[3] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
来源
PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2010, VOL 2 | 2012年
关键词
EEG-ALPHA; RESPONSES; BRAIN; OSCILLATIONS; SYNCHRONIZATION; AREAS;
D O I
暂无
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In this paper, the authors study the structure of a novel binaural sound with a certain phase and amplitude modulation and the response to this excitation when it is applied to natural rewarding circuit of human brain through auditory neural pathways. This novel excitation, also referred to as gyrosonic excitation in this work, has been found to have interesting effects such as stabilization effects on the left and right hemispheric brain signaling as captured by Galvanic Skin Resistance (GSR) measurements, control of cardiac rhythms (observed from ECG signals), mitigation of psychosomatic syndrome, and mitigation of migraine pain. Experimental data collected from human subjects are presented, and these data are examined to categorize the extent of systems disorder and reinforcement reward due to the gyrosonic stimulus. A multi-path reduced-order model has been developed to analyze the GSR signals. The filtered results are indicative of complicated reinforcing reward patterns due to the gyrosonic stimulation when it is used as a control input for patients with psychosomatic and cardiac disorders.
引用
收藏
页码:409 / +
页数:2
相关论文
共 50 条
  • [21] A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound
    Kreider, Wayne
    Crum, Lawrence A.
    Bailey, Michael R.
    Sapozhnikov, Oleg A.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2011, 130 (05): : 3511 - 3530
  • [22] Further results on adaptive full-order and reduced-order observers for Lur'e differential inclusions
    Zhang, Junfeng
    Han, Zhengzhi
    Zhu, Fubo
    Zhang, Wei
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (05) : 1582 - 1590
  • [23] Reduced-order approximation of consensus dynamics in networks with a hybrid adaptive communication protocol
    Burke, Richard
    Piiroinen, Petri T.
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2018, 27 : 298 - 306
  • [24] Consensus of linear multi-agent systems via reduced-order observer
    Yang, Tingting
    Zhang, Pengfei
    Yu, Shuanghe
    NEUROCOMPUTING, 2017, 240 : 200 - 208
  • [25] Indirect reduced-order modelling: using nonlinear manifolds to conserve kinetic energy
    Nicolaidou, Evangelia
    Hill, Thomas L.
    Neild, Simon A.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2243):
  • [26] Time-domain non-linear aeroelastic analysis via a projection-based reduced-order model
    Lee, S.
    Cho, H.
    Kim, H.
    Shin, S. -J.
    AERONAUTICAL JOURNAL, 2020, 124 (1281): : 1798 - 1818
  • [27] Quasi-continuous high-order sliding-mode controllers for reduced-order chaos synchronization
    Rodriguez, A.
    De Leon, J.
    Fridman, L.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2008, 43 (09) : 948 - 961
  • [28] Physics-assisted reduced-order modeling for identifying dominant features of transonic buffet
    Wang, Jing
    Xie, Hairun
    Zhang, Miao
    Xu, Hui
    PHYSICS OF FLUIDS, 2023, 35 (06)
  • [29] Reduced-order synchronization of fractional order chaotic systems with fully unknown parameters using modified adaptive control
    Al-Sawalha, M. Mossa
    Shoaib, M.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (04): : 1815 - 1825
  • [30] Reduced-Order and Aggregated Modeling of Large-Signal Synchronization Stability for Multiconverter Systems
    Taul, Mads Graungaard
    Wang, Xiongfei
    Davari, Pooya
    Blaabjerg, Frede
    IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2021, 9 (03) : 3150 - 3165