A framework for particle filtering in positioning, navigation and tracking problems

被引:0
作者
Gustafsson, F [1 ]
Gunnarsson, F [1 ]
Bergman, N [1 ]
Forssell, U [1 ]
Jansson, J [1 ]
Nordlund, PJ [1 ]
Karlsson, R [1 ]
机构
[1] Linkoping Univ, Dept Elect Engn, SE-58183 Linkoping, Sweden
来源
2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS | 2001年
关键词
D O I
10.1109/SSP.2001.955215
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A framework for positioning, navigation and tracking problems using particle filters (recursive Monte Carlo methods) is developed. Automotive and airborn applications, approached in this framework, have proven a numerical advantage over classical Kalman filter based algorithms. Here the use of non-linear measurement models and non-Gaussian measurement noise is the main explanation for the improvement in accuracy, and models for relevant sensors are surveyed.
引用
收藏
页码:34 / 37
页数:4
相关论文
共 10 条
  • [1] [Anonymous], LINEAR ESTIMATION
  • [2] Bar-Shalom Yaakov., 1993, ESTIMATION TRACKING
  • [3] BERGMAN N, 1999, THESIS LINKOPING U S
  • [4] DEFREITAS JFG, 2000, SEQUENTIAL MONTE CAR
  • [5] On sequential Monte Carlo sampling methods for Bayesian filtering
    Doucet, A
    Godsill, S
    Andrieu, C
    [J]. STATISTICS AND COMPUTING, 2000, 10 (03) : 197 - 208
  • [6] DRANE C, 1998, IEEE COMMUNICATIONS, V36
  • [7] NOVEL-APPROACH TO NONLINEAR NON-GAUSSIAN BAYESIAN STATE ESTIMATION
    GORDON, NJ
    SALMOND, DJ
    SMITH, AFM
    [J]. IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (02) : 107 - 113
  • [8] Gustafsson F, 2000, ADAPTIVE FILTERING C
  • [9] Filtering via simulation: Auxiliary particle filters
    Pitt, MK
    Shephard, N
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (446) : 590 - 599
  • [10] Spiegelhalter D., 1995, MARKOV CHAIN MONTE C