Determination of the dominant diffusing species during nickel and palladium germanide formation

被引:16
作者
Comrie, C. M. [1 ]
Smeets, D. [2 ,3 ]
Pondo, K. J. [1 ,4 ]
van der Walt, C. [1 ]
Demeulemeester, J. [2 ]
Knaepen, W. [5 ]
Detavernier, C. [5 ]
Habanyama, A. [4 ]
Vantomme, A. [2 ]
机构
[1] Univ Cape Town, Dept Phys, ZA-7700 Rondebosch, South Africa
[2] Katholieke Univ Leuven, Inst Kern & Stralingsfys, B-3001 Louvain, Belgium
[3] Univ Montreal, Dept Phys, RQMP, Montreal, PQ H3C 3J7, Canada
[4] Univ Zambia, Dept Phys, Lusaka 10101, Zambia
[5] Univ Ghent, Vakgrp Vaste Stofwetenschappen, B-9000 Ghent, Belgium
基金
新加坡国家研究基金会;
关键词
Dominant diffusing species; Nickel germanide; Palladium germanide; Ion beam analysis; Real-time Rutherford backscattering spectrometry; THIN-FILM REACTION; SILICIDE FORMATION; INTERMETALLIC COMPOUNDS; GROWTH; MARKER; PD2SI; KINETICS; PD2GE;
D O I
10.1016/j.tsf.2012.10.113
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have used real-time Rutherford backscattering spectrometry to determine the dominant diffusing species during the formation of nickel germanide and palladium germanide; two of the most promising candidates for use as ohmic contacts were germanium to replace silicon in devices. In the Ni/Ge system Ni5Ge3 is the first phase to form, followed by NiGe. The results show that during Ni5Ge3 formation Ni is essentially the sole diffusing species and is responsible for almost all the growth. During the 2nd-phase formation both Ni and Ge diffuse, with the Ge diffusion prominent during the very early stages, while the later stage of growth is dominated by Ni diffusion. During the formation of Pd2Ge and PdGe phases the metal (i.e. palladium) is once again the dominant diffusing species. The relative contribution of germanium diffusion to the growth is, however, more prominent in the Pd/Ge system, with significant amounts of Ge diffusion being observed during formation of both phases. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:261 / 268
页数:8
相关论文
共 29 条
[1]   INTERFACE-MARKER TECHNIQUE APPLIED TO THE STUDY OF METAL SILICIDE GROWTH [J].
BAGLIN, JEE ;
DHEURLE, FM ;
HAMMER, WN ;
PETERSSON, S .
NUCLEAR INSTRUMENTS & METHODS, 1980, 168 (1-3) :491-497
[2]   Germanium MOSFET devices: Advances in materials understanding, process development, and electrical performance [J].
Brunco, D. P. ;
De Jaeger, B. ;
Eneman, G. ;
Mitard, J. ;
Hellings, G. ;
Satta, A. ;
Terzieva, V. ;
Souriau, L. ;
Leys, F. E. ;
Pourtois, G. ;
Houssa, M. ;
Winderickx, G. ;
Vrancken, E. ;
Sioncke, S. ;
Opsomer, K. ;
Nicholas, G. ;
Caymax, M. ;
Stesmans, A. ;
Van Steenbergen, J. ;
Mertens, P. W. ;
Meuris, M. ;
Heyns, M. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (07) :H552-H561
[3]   Observation and suppression of nickel germanide overgrowth on germanium substrates with patterned SiO2 structures [J].
Brunco, D. P. ;
Opsomer, K. ;
De Jaeger, B. ;
Winderickx, G. ;
Verheyden, K. ;
Meuris, M. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (02) :H39-H41
[4]  
Claeys C., 2007, Germanium-based technologies: from materials to devices
[5]   DIFFUSION OF SILICON IN PD2SI DURING SILICIDE FORMATION [J].
COMRIE, CM ;
EGAN, JM .
JOURNAL OF APPLIED PHYSICS, 1988, 64 (03) :1173-1177
[6]   Dominant diffusing species during cobalt silicide formation [J].
Comrie, CM ;
Newman, RT .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (01) :153-156
[7]   DIFFUSION OF SILICON IN PD2SI DURING GROWTH [J].
COMRIE, CM ;
EGAN, JM .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1989, 7 (03) :1492-1496
[8]   Kinetics of formation of silicides: A review [J].
d'Heurle, F. M. ;
Gas, P. .
JOURNAL OF MATERIALS RESEARCH, 1986, 1 (01) :205-221
[9]   Diffusion in intermetallic compounds:: the ordered Cu3Au rule, its history [J].
d'Heurle, FM ;
Gas, P ;
Lavoie, C ;
Philibert, J .
ZEITSCHRIFT FUR METALLKUNDE, 2004, 95 (10) :852-859
[10]   Sn diffusion during Ni germanide growth on Ge1-xSnx [J].
Demeulemeester, J. ;
Schrauwen, A. ;
Nakatsuka, O. ;
Zaima, S. ;
Adachi, M. ;
Shimura, Y. ;
Comrie, C. M. ;
Fleischmann, C. ;
Detavernier, C. ;
Temst, K. ;
Vantomme, A. .
APPLIED PHYSICS LETTERS, 2011, 99 (21)