Mechanical Heterogeneity in the Bone Microenvironment as Characterized by Atomic Force Microscopy

被引:36
作者
Chen, Xinyue [1 ,2 ,3 ]
Hughes, Russell [2 ]
Mullin, Nic [1 ,3 ]
Hawkins, Rhoda J. [1 ,3 ]
Holen, Ingunn [2 ]
Brown, Nicola J. [2 ]
Hobbs, Jamie K. [1 ,3 ]
机构
[1] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England
[2] Univ Sheffield, Dept Oncol & Metab, Sheffield, S Yorkshire, England
[3] Univ Sheffield, Krebs Inst, Sheffield, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
CORTICAL BONE; TRABECULAR BONE; VISCOELASTIC PROPERTIES; SINGLE-CELL; MARROW; INDENTATION; MODULUS; GROWTH; HISTOLOGY; MODELS;
D O I
10.1016/j.bpj.2020.06.026
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Bones are structurally heterogeneous organs with diverse functions that undergo mechanical stimuli across multiple length scales. Mechanical characterization of the bone microenvironment is important for understanding how bones function in health and disease. Here, we describe the mechanical architecture of cortical bone, the growth plate, metaphysis, and marrow in fresh murine bones, probed using atomic force microscopy in physiological buffer. Both elastic and viscoelastic properties are found to be highly heterogeneous with moduli ranging over three to five orders of magnitude, both within and across regions. All regions include extremely compliant areas, with moduli of a few pascal and viscosities as low as tens of Pa center dot s. Aging impacts the viscoelasticity of the bone marrow strongly but has a limited effect on the other regions studied. Our approach provides the opportunity to explore the mechanical properties of complex tissues at the length scale relevant to cellular processes and how these impact aging and disease.
引用
收藏
页码:502 / 513
页数:12
相关论文
共 53 条
[1]   Fundamental High-Speed Limits in Single-Molecule, Single-Cell, and Nanoscale Force Spectroscopies [J].
Amo, Carlos A. ;
Garcia, Ricardo .
ACS Nano, 2016, 10 (07) :7117-7124
[2]  
Arifin WN, 2017, MALAYS J MED SCI, V24, P101, DOI 10.21315/mjms2017.24.5.11
[3]   Material anisotropy and elasticity of cortical and trabecular bone in the adult mouse femur via AFM indentation [J].
Asgari, Meisam ;
Abi-Rafeh, Jad ;
Hendy, Geoffrey N. ;
Pasini, Damiano .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2019, 93 :81-92
[4]   The role of cortical bone and its microstructure in bone strength [J].
Augat, Peter ;
Schorlemmer, Sandra .
AGE AND AGEING, 2006, 35 :27-31
[5]   Viscoelastic properties of bone as a function of hydration state determined by nanoindentation [J].
Bembey, A. K. ;
Oyen, M. L. ;
Bushby, A. J. ;
Boyde, A. .
PHILOSOPHICAL MAGAZINE, 2006, 86 (33-35) :5691-5703
[6]   Scanning Acoustic Microscopy for Mapping the Microelastic Properties of Human Corneal Tissue [J].
Beshtawi, Ithar M. ;
Akhtar, Riaz ;
Hillarby, M. Chantal ;
O'Donnell, Clare ;
Zhao, Xuegen ;
Brahma, Arun ;
Carley, Fiona ;
Derby, Brian ;
Radhakrishnan, Hema .
CURRENT EYE RESEARCH, 2013, 38 (04) :437-444
[7]  
Bryant J D, 1989, Proc Inst Mech Eng H, V203, P71, DOI 10.1243/PIME_PROC_1989_203_013_01
[8]   The bone microenvironment in metastasis; what is special about bone? [J].
Bussard, Karen M. ;
Gay, Carol V. ;
Mastro, Andrea M. .
CANCER AND METASTASIS REVIEWS, 2008, 27 (01) :41-55
[9]   Force measurements with the atomic force microscope: Technique, interpretation and applications [J].
Butt, HJ ;
Cappella, B ;
Kappl, M .
SURFACE SCIENCE REPORTS, 2005, 59 (1-6) :1-152
[10]   Spherical-tip indentation of viscoelastic material [J].
Cheng, L ;
Xia, X ;
Scriven, LE ;
Gerberich, WW .
MECHANICS OF MATERIALS, 2005, 37 (01) :213-226