Ion temperature gradient instability at sub-Larmor radius scales with non-zero ballooning angle

被引:14
作者
Migliano, P. [1 ]
Camenen, Y. [2 ]
Casson, F. J. [3 ]
Hornsby, W. A. [1 ]
Peeters, A. G. [1 ]
机构
[1] Univ Bayreuth, Dept Phys, Bayreuth, Germany
[2] Aix Marseille Univ, PIIM, CNRS, UMR 7345, F-13397 Marseille, France
[3] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany
关键词
TURBULENCE SIMULATIONS; MODES; TOKAMAK;
D O I
10.1063/1.4789856
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Linear gyro-kinetic stability calculations predict unstable toroidal ion temperature gradient modes (ITGs) with normalised poloidal wave vectors well above one (k(theta)rho(i) > 1) for standard tokamak parameters with adiabatic electron response. These modes have a maximum amplitude at a poloidal angle theta that is shifted away from the low field side (theta not equal 0). The physical mechanism is clarified through the use of a fluid model. It is shown that the shift of the mode away from the low field side reduces the effective drift frequency which allows for the instability to develop. Numerical tests using the gyro-kinetic model confirm this physical mechanism. Furthermore, it is shown that modes localized away from the low field side can be important also for k(theta)rho(i) < 1 close to the threshold of the ITG. In fact, modes with maximum amplitude at theta not equal 0 can exist for normalised temperature gradient lengths below the threshold of the ITG obtained for the case with the maximum at theta = 0. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789856]
引用
收藏
页数:6
相关论文
共 16 条
[1]   FIELD-ALIGNED COORDINATES FOR NONLINEAR SIMULATIONS OF TOKAMAK TURBULENCE [J].
BEER, MA ;
COWLEY, SC ;
HAMMETT, GW .
PHYSICS OF PLASMAS, 1995, 2 (07) :2687-2700
[2]  
Casson F. J., 2011, THESIS U WARWICK
[3]   Short wavelength ion temperature gradient turbulence [J].
Chowdhury, J. ;
Brunner, S. ;
Ganesh, R. ;
Lapillonne, X. ;
Villard, L. ;
Jenko, F. .
PHYSICS OF PLASMAS, 2012, 19 (10)
[4]   Short wavelength ion temperature gradient mode and coupling with trapped electrons [J].
Chowdhury, J. ;
Ganesh, R. ;
Vaclavik, J. ;
Brunner, S. ;
Villard, L. ;
Angelino, P. .
PHYSICS OF PLASMAS, 2009, 16 (08)
[5]   SHEAR, PERIODICITY, AND PLASMA BALLOONING MODES [J].
CONNOR, JW ;
HASTIE, RJ ;
TAYLOR, JB .
PHYSICAL REVIEW LETTERS, 1978, 40 (06) :396-399
[6]   Comparisons and physics basis of tokamak transport models and turbulence simulations [J].
Dimits, AM ;
Bateman, G ;
Beer, MA ;
Cohen, BI ;
Dorland, W ;
Hammett, GW ;
Kim, C ;
Kinsey, JE ;
Kotschenreuther, M ;
Kritz, AH ;
Lao, LL ;
Mandrekas, J ;
Nevins, WM ;
Parker, SE ;
Redd, AJ ;
Shumaker, DE ;
Sydora, R ;
Weiland, J .
PHYSICS OF PLASMAS, 2000, 7 (03) :969-983
[7]   Short wavelength ion temperature gradient instability in toroidal plasmas [J].
Gao, Z ;
Sanuki, H ;
Itoh, K ;
Dong, JQ .
PHYSICS OF PLASMAS, 2005, 12 (02)
[8]   Temperature gradient driven short wavelength modes in sheared slab plasmas [J].
Gao, Z ;
Sanuki, H ;
Itoh, K ;
Dong, JQ .
PHYSICS OF PLASMAS, 2003, 10 (07) :2831-2839
[9]   Short wavelength temperature gradient driven modes in tokamaks [J].
Hirose, A ;
Elia, M ;
Smolyakov, AI ;
Yagi, M .
PHYSICS OF PLASMAS, 2002, 9 (05) :1659-1666
[10]   Clarifications to the limitations of the s-α equilibrium model for gyrokinetic computations of turbulence [J].
Lapillonne, X. ;
Brunner, S. ;
Dannert, T. ;
Jolliet, S. ;
Marinoni, A. ;
Villard, L. ;
Goerler, T. ;
Jenko, F. ;
Merz, F. .
PHYSICS OF PLASMAS, 2009, 16 (03)