Multigrid methods for isogeometric discretization

被引:61
作者
Gahalaut, K. P. S. [1 ]
Kraus, J. K. [1 ]
Tomar, S. K. [1 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
B-splines; Galerkin formulation; Isogeometric method; Multigrid method; NURBS; DIRICHLET BOUNDARY-CONDITIONS; REFINEMENT; STABILITY;
D O I
10.1016/j.cma.2012.08.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present (geometric) multigrid methods for isogeometric discretization of scalar second order elliptic problems. The smoothing property of the relaxation method, and the approximation property of the intergrid transfer operators are analyzed. These properties, when used in the framework of classical multigrid theory, imply uniform convergence of two-grid and multigrid methods. Supporting numerical results are provided for the smoothing property, the approximation property, convergence factor and iterations count for V-, W- and F-cycles, and the linear dependence of V-cycle convergence on the smoothing steps. For two dimensions, numerical results include the problems with variable coefficients, simple multi-patch geometry, a quarter annulus, and the dependence of convergence behavior on refinement levels e, whereas for three dimensions, only the constant coefficient problem in a unit cube is considered. The numerical results are complete up to polynomial order p = 4, and for C-0 and Cp-1 smoothness. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:413 / 425
页数:13
相关论文
共 38 条
  • [1] [Anonymous], 2007, FINITE ELEMENTE
  • [2] [Anonymous], 1994, ITERATIVE SOLUTION L
  • [3] [Anonymous], 2008, MATH THEORY FINITE E, V105, pA341
  • [4] [Anonymous], 1977, FINITE ELEMENT SCHEM
  • [5] [Anonymous], 1982, Technical Report
  • [6] Astrachancev G., 1971, COMP MATH MATH PHYS+, V11, P171, DOI 10.1016/0041-5553(71)90170-4
  • [7] A fully "locking-free" isogeometric approach for plane linear elasticity problems: A stream function formulation
    Auricchio, F.
    da Veiga, L. Beirao
    Buffa, A.
    Lovadina, C.
    Reali, A.
    Sangalli, G.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 197 (1-4) : 160 - 172
  • [8] Axelsson O., 2001, Finite Element Solution of Boundary Value Problems: Theory and Computation
  • [9] Bakhvalov N.S., 1966, USSR COMP MATH MATH, V6, P101, DOI [DOI 10.1016/0041-5553(66)90118-2, 10.1016/0041-5553(66)90118-2]
  • [10] Weak Dirichlet boundary conditions for wall-bounded turbulent flows
    Bazilevs, Y.
    Michler, C.
    Calo, V. M.
    Hughes, T. J. R.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (49-52) : 4853 - 4862