Theory-Guided Materials Design of Multi-Phase Ti-Nb Alloys with Bone-Matching Elastic Properties

被引:74
作者
Friak, Martin [1 ]
Counts, William Art [1 ]
Ma, Duancheng [1 ]
Sander, Benedikt [1 ]
Holec, David [2 ]
Raabe, Dierk [1 ]
Neugebauer, Joerg [1 ]
机构
[1] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany
[2] Univ Leoben, Dept Phys Met & Mat Testing, A-8700 Leoben, Austria
来源
MATERIALS | 2012年 / 5卷 / 10期
关键词
bio-materials; ab initio; Ti alloys; multi-phase composites; multi-scale; finite element method; biocompatibility; BETA-TITANIUM ALLOYS; LOW YOUNGS MODULUS; AB-INITIO CALCULATIONS; ZR-FE ALLOY; MECHANICAL-PROPERTIES; TA-ZR; MICROSTRUCTURAL EVOLUTION; 1ST-PRINCIPLES CALCULATIONS; THERMOMECHANICAL TREATMENT; STRENGTHENING MECHANISMS;
D O I
10.3390/ma5101853
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a scale-bridging approach for modeling the integral elastic response of polycrystalline composite that is based on a multi-disciplinary combination of (i) parameter-free first-principles calculations of thermodynamic phase stability and single-crystal elastic stiffness; and (ii) homogenization schemes developed for polycrystalline aggregates and composites. The modeling is used as a theory-guided bottom-up materials design strategy and applied to Ti-Nb alloys as promising candidates for biomedical implant applications. The theoretical results (i) show an excellent agreement with experimental data and (ii) reveal a decisive influence of the multi-phase character of the polycrystalline composites on their integral elastic properties. The study shows that the results based on the density functional theory calculations at the atomistic level can be directly used for predictions at the macroscopic scale, effectively scale-jumping several orders of magnitude without using any empirical parameters.
引用
收藏
页码:1853 / 1872
页数:20
相关论文
共 89 条
  • [1] Zr-Ti-Nb porous alloys for biomedical application
    Aguilar Maya, A. E.
    Grana, D. R.
    Hazarabedian, A.
    Kokubu, G. A.
    Luppo, M. I.
    Vigna, G.
    [J]. MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2012, 32 (02): : 321 - 329
  • [2] Allard S., 1969, INT TABLES SELECTED
  • [3] Recent developments in microstructure/property relationships of beta titanium alloys
    Ankem, S
    Greene, CA
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1999, 263 (02): : 127 - 131
  • [4] Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials
    Aziz-Kerrzo, M
    Conroy, KG
    Fenelon, AM
    Farrell, ST
    Breslin, CB
    [J]. BIOMATERIALS, 2001, 22 (12) : 1531 - 1539
  • [5] Comparative study on the corrosion behavior of Ti-Nb and TMA alloys for dental application in various artificial solutions
    Bai, Y. J.
    Wang, Y. B.
    Cheng, Y.
    Deng, F.
    Zheng, Y. F.
    Wei, S. C.
    [J]. MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2011, 31 (03): : 702 - 711
  • [6] A novel combinatorial approach to the development of beta titanium alloys for orthopaedic implants
    Banerjee, R
    Nag, S
    Fraser, HL
    [J]. MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2005, 25 (03): : 282 - 289
  • [7] Strengthening mechanisms in Ti-Nb-Zr-Ta and Ti-Mo-Zr-Fe orthopaedic alloys
    Banerjee, R
    Nag, S
    Stechschulte, J
    Fraser, HL
    [J]. BIOMATERIALS, 2004, 25 (17) : 3413 - 3419
  • [8] Microstructural evolution in laser deposited compositionally graded α/β titanium-vanadium alloys
    Banerjee, R
    Collins, PC
    Bhattacharyya, D
    Banerjee, S
    Fraser, HL
    [J]. ACTA MATERIALIA, 2003, 51 (11) : 3277 - 3292
  • [9] Bannykh OA, 1996, RUSS METALL+, P30
  • [10] Structural mechanisms of the mechanical degradation of Ti-Al-V alloys:: in situ study during annealing
    Berberich, F
    Matz, W
    Richter, E
    Schell, N
    Kreissig, U
    Möller, W
    [J]. SURFACE & COATINGS TECHNOLOGY, 2000, 128 : 450 - 454