Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics

被引:115
作者
Caruso, Filippo [1 ,2 ]
Tsallis, Constantino [3 ,4 ]
机构
[1] CNR, INFM, NEST, I-56126 Pisa, Italy
[2] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[3] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[4] Santa Fe Inst, Santa Fe, NM 87501 USA
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 02期
关键词
D O I
10.1103/PhysRevE.78.021102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Boltzmann-Gibbs-von Neumann entropy of a large part (of linear size L) of some (much larger) d-dimensional quantum systems follows the so-called area law (as for black holes), i.e., it is proportional to Ld-1. Here we show, for d= 1 2, that the (nonadditive) entropy S-q satisfies, for a special value of q not equal 1, the classical thermodynamical prescription for the entropy to be extensive, i.e., S-q alpha L-d. Therefore, we reconcile with classical thermodynamics the area law widespread in quantum systems. Recently, a similar behavior was exhibited in mathematical models with scale-invariant. correlations [C. Tsallis, M. Gell-Mann, and Y. Sato, Proc. Natl. Acad. Sci. U.S.A. 102 15377 (2005)]. Finally, we find that the system critical features are marked by a maximum of the special entropic index q.
引用
收藏
页数:6
相关论文
共 58 条
[1]   Quantum entanglement inferred by the principle of maximum nonadditive entropy [J].
Abe, S ;
Rajagopal, AK .
PHYSICAL REVIEW A, 1999, 60 (05) :3461-3466
[2]   Nonadditive information measure and quantum entanglement in a class of mixed states of an Nn system -: art. no. 052323 [J].
Abe, S .
PHYSICAL REVIEW A, 2002, 65 (05) :6
[3]   Nonadditive conditional entropy and its significance for local realism [J].
Abe, S ;
Rajagopal, AK .
PHYSICA A, 2001, 289 (1-2) :157-164
[4]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[5]   Breakdown of exponential sensitivity to initial conditions: Role of the range of interactions [J].
Anteneodo, C ;
Tsallis, C .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5313-5316
[6]   4 LAWS OF BLACK HOLE MECHANICS [J].
BARDEEN, JM ;
CARTER, B ;
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 31 (02) :161-170
[7]   STATISTICAL MECHANICS OF XY MODEL .1 [J].
BAROUCH, E ;
MCCOY, BM ;
DRESDEN, M .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 2 (03) :1075-+
[8]   STATISTICAL MECHANICS OF XY-MODEL .2. SPIN-CORRELATION FUNCTIONS [J].
BAROUCH, E ;
MCCOY, BM .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 3 (02) :786-+
[9]   Entanglement scaling in critical two-dimensional fermionic and bosonic systems [J].
Barthel, T. ;
Chung, M. -C. ;
Schollwoeck, U. .
PHYSICAL REVIEW A, 2006, 74 (02)
[10]   A nonextensive thermodynamical equilibrium approach in e+e- → hadrons [J].
Bediaga, I ;
Curado, EMF ;
de Miranda, JM .
PHYSICA A, 2000, 286 (1-2) :156-163