Amplitude morphology of GPS radio occultation data for sporadic-E layers

被引:33
作者
Yeh, Wen-Hao [2 ]
Huang, Cheng-Yung [1 ]
Hsiao, Tung-Yuan [3 ]
Chiu, Tsen-Chieh [2 ]
Lin, Chien-Hung [4 ]
Liou, Yuei-An [5 ]
机构
[1] Natl Cent Univ, GPS Sci & Applicat Res Ctr, Chungli 32001, Taiwan
[2] Natl Cent Univ, Dept Elect Engn, Chungli 32001, Taiwan
[3] Hsing Wu Inst Technol, Dept Informat Technol, New Taipei City, Taiwan
[4] Natl Cheng Kung Univ, Dept Earth Sci, Tainan 70101, Taiwan
[5] Natl Cent Univ, Ctr Space & Remote Sensing Res, Johng Li, Taiwan
关键词
RADAR OBSERVATIONS; MIDLATITUDE; CHAMP;
D O I
10.1029/2012JA017875
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using the Global Positioning System radio occultation (GPSRO) technique, the observation of the global ionosphere becomes possible. The irregularity in the ionospheric sporadic-E (Es) layer, which is probably caused by wind shear, can be investigated by analyzing the signal-to-noise ratio (SNR) of RO signal. In this study, the relation between the amplitude of RO signals and the electron density profiles of the ionosphere is simulated, and RO data recorded in the time period from mid-2008 to mid-2011 are used for the analysis. Based on the simulation results, the multiple-layer-type (MLT) and the single-layer-type (SLT) Es layers which are defined by the shape of SNR, are used to analyze the global distribution of Es layer. The seasonal MLT Es layer is compared with the seasonal wind shear, which is obtained from the Horizontal Wind Model (HWM07). Furthermore, the seasonal MLT Es layer is compared with the SLT Es layer, and the global altitude distributions of MLT and SLT Es layers are similar while the magnitude distributions are different. Unlike the MLT Es layer, the global distribution of the SLT Es layer is similar to the distribution of E region peak electron density (NmE), which is related to the solar zenith angle.
引用
收藏
页数:8
相关论文
共 29 条
[1]   A global climatology of ionospheric irregularities derived from GPS radio occultation [J].
Arras, C. ;
Wickert, J. ;
Beyerle, G. ;
Heise, S. ;
Schmidt, T. ;
Jacobi, C. .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (14)
[2]   Semidiurnal tidal signature in sporadic E occurrence rates derived from GPS radio occultation measurements at higher midlatitudes [J].
Arras, C. ;
Jacobi, C. ;
Wickert, J. .
ANNALES GEOPHYSICAE, 2009, 27 (06) :2555-2563
[3]   Simulation of the sporadic E layer response to prereversal associated evening vertical electric field enhancement near dip equator [J].
Carrasco, A. J. ;
Batista, I. S. ;
Abdu, M. A. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2007, 112 (A6)
[4]   Simulation of the nonlinear evolution of the sporadic-E layer instability in the nighttime midlatitude ionosphere [J].
Cosgrove, Russell B. ;
Tsunoda, Roland T. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2003, 108 (A7)
[5]  
Davies K., 1990, IONOSPHERIC RADIO, V31, DOI [10.1049/PBEW031E, DOI 10.1049/PBEW031E]
[6]  
Drob DP, 2008, J GEOPHYS RES SPACE, V113, DOI DOI 10.1029/2008JA013668
[7]  
Feng DD, 1999, J ATMOS OCEAN TECH, V16, P989, DOI 10.1175/1520-0426(1999)016<0989:RSTESA>2.0.CO
[8]  
2
[9]   An explanation for the seasonal dependence of midlatitude sporadic E layers [J].
Haldoupis, C. ;
Pancheva, D. ;
Singer, W. ;
Meek, C. ;
MacDougall, J. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2007, 112 (A6)
[10]  
Hocke K, 2001, J ATMOS SOL-TERR PHY, V63, P1973, DOI 10.1016/S1364-6826(01)00063-3