Comparative co-expression analysis in plant biology

被引:71
作者
Movahedi, Sara
Van Bel, Michiel
Heyndrickx, Ken S.
Vandepoele, Klaas [1 ]
机构
[1] VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium
关键词
bioinformatics; comparative genomics; expression analysis; orthology; GENE-EXPRESSION ATLAS; ARABIDOPSIS-THALIANA; COMPARATIVE GENOMICS; TRANSCRIPTOME ATLAS; MICROARRAY ANALYSIS; CORRELATION NETWORK; RICE; DATABASE; MODULES; TOOLS;
D O I
10.1111/j.1365-3040.2012.02517.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The analysis of gene expression data generated by high-throughput microarray transcript profiling experiments has shown that transcriptionally coordinated genes are often functionally related. Based on large-scale expression compendia grouping multiple experiments, this guilt-by-association principle has been applied to study modular gene programmes, identify cis-regulatory elements or predict functions for unknown genes in different model plants. Recently, several studies have demonstrated how, through the integration of gene homology and expression information, correlated gene expression patterns can be compared between species. The incorporation of detailed functional annotations as well as experimental data describing proteinprotein interactions, phenotypes or tissue specific expression, provides an invaluable source of information to identify conserved gene modules and translate biological knowledge from model organisms to crops. In this review, we describe the different steps required to systematically compare expression data across species. Apart from the technical challenges to compute and display expression networks from multiple species, some future applications of plant comparative transcriptomics are highlighted.
引用
收藏
页码:1787 / 1798
页数:12
相关论文
共 69 条
[1]   Gene expression omnibus: Microarray data storage, submission, retrieval, and analysis [J].
Barrett, Tanya ;
Edgar, Ron .
DNA MICROARRAYS, PART B: DATABASES AND STATISTICS, 2006, 411 :352-369
[2]   Clustering gene expression patterns [J].
Ben-Dor, A ;
Shamir, R ;
Yakhini, Z .
JOURNAL OF COMPUTATIONAL BIOLOGY, 1999, 6 (3-4) :281-297
[3]   A gene expression atlas of the model legume Medicago truncatula [J].
Benedito, Vagner A. ;
Torres-Jerez, Ivone ;
Murray, Jeremy D. ;
Andriankaja, Andry ;
Allen, Stacy ;
Kakar, Klementina ;
Wandrey, Maren ;
Verdier, Jerome ;
Zuber, Helene ;
Ott, Thomas ;
Moreau, Sandra ;
Niebel, Andreas ;
Frickey, Tancred ;
Weiller, Georg ;
He, Ji ;
Dai, Xinbin ;
Zhao, Patrick X. ;
Tang, Yuhong ;
Udvardi, Michael K. .
PLANT JOURNAL, 2008, 55 (03) :504-513
[4]   Similarities and differences in genome-wide expression data of six organisms [J].
Bergmann, S ;
Ihmels, J ;
Barkai, N .
PLOS BIOLOGY, 2004, 2 (01) :85-93
[5]   Accurate Quantification of Functional Analogy among Close Homologs [J].
Chikina, Maria D. ;
Troyanskaya, Olga G. .
PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (02)
[6]   How does gene expression clustering work? [J].
D'haeseleer, P .
NATURE BIOTECHNOLOGY, 2005, 23 (12) :1499-1501
[7]   CORNET: A User-Friendly Tool for Data Mining and Integration [J].
De Bodt, Stefanie ;
Carvajal, Diana ;
Hollunder, Jens ;
Van den Cruyce, Joost ;
Movahedi, Sara ;
Inze, Dirk .
PLANT PHYSIOLOGY, 2010, 152 (03) :1167-1179
[8]   An atlas of gene expression from seed to seed through barley development [J].
Druka A. ;
Muehlbauer G. ;
Druka I. ;
Caldo R. ;
Baumann U. ;
Rostoks N. ;
Schreiber A. ;
Wise R. ;
Close T. ;
Kleinhofs A. ;
Graner A. ;
Schulman A. ;
Langridge P. ;
Sato K. ;
Hayes P. ;
McNicol J. ;
Marshall D. ;
Waugh R. .
Functional & Integrative Genomics, 2006, 6 (3) :202-211
[9]   TobEA: an atlas of tobacco gene expression from seed to senescence [J].
Edwards, Kieron D. ;
Bombarely, Aureliano ;
Story, Geraint W. ;
Allen, Fraser ;
Mueller, Lukas A. ;
Coates, Steve A. ;
Jones, Louise .
BMC GENOMICS, 2010, 11
[10]   Gene Coexpression Network Alignment and Conservation of Gene Modules between Two Grass Species: Maize and Rice [J].
Ficklin, Stephen P. ;
Feltus, F. Alex .
PLANT PHYSIOLOGY, 2011, 156 (03) :1244-1256