THE OSTROWSKI TYPE INEQUALITIES WITH THE APPLICATION TO THE THREE POINT INTEGRAL FORMULA

被引:0
|
作者
Kovac, Sanja [1 ]
Pecaric, Josip [2 ]
Tipuric-Spuzevic, Sanja [3 ]
机构
[1] Univ Zagreb, Fac Geotehn Engn, Hallerova Aleja 7, Varazhdin 42000, Croatia
[2] RUDN Univ, Miklukho Maklaya Str 6, Moscow 117198, Russia
[3] Univ Mostar, Fac Sci & Educ, Mostar 88000, Bosnia & Herceg
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2019年 / 22卷 / 02期
关键词
sequences of harmonic polynomials; numerical integration; L-p (spaces); inequalities; Gaussian quadrature; Simpson's rule; dual Simpson's rule; Maclaurin's rule;
D O I
10.7153/mia-2019-22-29
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The generalization of the integral formula with three nodes is introduced, and some sharp and the best possible inequalities for the functions whose higher order derivatives belong to L-p spaces are given. We establish non-weighted version of the three point integral formula. From the general non-weighted formula we shall get the famous Simpson, dual Simpson and Maclaurin formulae. Some new errors of approximation in these integral formulae are obtained.
引用
收藏
页码:401 / 420
页数:20
相关论文
共 50 条
  • [31] ON SOME OSTROWSKI TYPE INEQUALITIES VIA MONTGOMERY IDENTITY AND TAYLOR'S FORMULA
    Aljinovic, A. Aglic
    Pecaric, J.
    TAMKANG JOURNAL OF MATHEMATICS, 2005, 36 (03): : 199 - 218
  • [32] Fuzzy Ostrowski type inequalities
    Anastassiou, George A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2003, 22 (02): : 279 - 292
  • [33] Gruss and Ostrowski type inequalities
    Niezgoda, Marek
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (23) : 9779 - 9789
  • [34] Refinements of Ostrowski Type Integral Inequalities Involving Atangana-Baleanu Fractional Integral Operator
    Ahmad, Hijaz
    Tariq, Muhammad
    Sahoo, Soubhagya Kumar
    Askar, Sameh
    Abouelregal, Ahmed E.
    Khedher, Khaled Mohamed
    SYMMETRY-BASEL, 2021, 13 (11):
  • [35] On Ostrowski Type Inequalities and Cebysev Type Inequalities with Applications
    Kiris, Mehmet Eyup
    Sarikaya, Mehmet Zeki
    FILOMAT, 2015, 29 (08) : 1695 - 1713
  • [36] New upper bounds of Ostrowski type integral inequalities utilizing Taylor expansion
    Budak, Huseyin
    Usta, Fuat
    Sarikaya, Mehmet Zeki
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (03): : 567 - 578
  • [37] Probabilistic Ostrowski type inequalities
    Anastassiou, GA
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2002, 20 (06) : 1177 - 1189
  • [38] Multivariate Ostrowski type inequalities
    Anastassiou, GA
    ACTA MATHEMATICA HUNGARICA, 1997, 76 (04) : 267 - 278
  • [39] NEW WEIGHTED CEBYSEV-OSTROWSKI TYPE INTEGRAL INEQUALITIES ON TIME SCALES
    Tuna, Adnan
    Liu, Wenjun
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (02): : 327 - 356
  • [40] Multivariate Ostrowski Type Inequalities
    G.A. Anastassiou
    Acta Mathematica Hungarica, 1997, 76 : 267 - 278