Motion correction methods for MRS: experts' consensus recommendations

被引:37
作者
Andronesi, Ovidiu C. [1 ]
Bhattacharyya, Pallab K. [2 ]
Bogner, Wolfgang [3 ]
Choi, In-Young [4 ]
Hess, Aaron T. [5 ]
Lee, Phil [6 ]
Meintjes, Ernesta M. [7 ]
Tisdall, M. Dylan [8 ]
Zaitzev, Maxim [9 ,10 ]
van der Kouwe, Andre [1 ]
机构
[1] Harvard Med Sch, Massachusetts Gen Hosp, Dept Radiol, Athinoula A Martinos Ctr Biomed Imaging, Thirteenth St, Boston, MA 02129 USA
[2] Cleveland Clin, Imaging Inst, Cleveland, OH 44106 USA
[3] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, High Field MR Ctr, Vienna, Austria
[4] Univ Kansas, Med Ctr, Dept Neurol, Hoglund Biomed Imaging Ctr, Kansas City, KS 66103 USA
[5] Univ Oxford, Univ Oxford Ctr Clin Magnet Resonance Res, Div Cardiovasc Med, Oxford, England
[6] Univ Kansas, Med Ctr, Dept Radiol, Hoglund Biomed Imaging Ctr, Kansas City, KS 66103 USA
[7] Univ Cape Town, Div Biomed Engn, Dept Human Biol, Biomed Engn Res Ctr,Fac Hlth Sci, Cape Town, South Africa
[8] Univ Penn, Dept Radiol, Perelman Sch Med, Philadelphia, PA 19104 USA
[9] Univ Freiburg, Dept Radiol, Med Ctr, Med Phys, Freiburg, Germany
[10] Med Univ Vienna, High Field Magnet Resonance Ctr, Ctr Med Phys & Biomed Engn, Vienna, Austria
基金
奥地利科学基金会; 英国医学研究理事会; 新加坡国家研究基金会;
关键词
Metabolites-neurochemistry; motion correction; MRS; navigator; NMR probes; optical tracking; real time; shim correction; REAL-TIME MOTION; RESONANCE-SPECTROSCOPY; HUMAN BRAIN; WATER-SUPPRESSION; SPECTRAL QUALITY; VOLUMETRIC NAVIGATORS; PROTON SPECTROSCOPY; SIGNAL LOSS; FREQUENCY; ARTIFACTS;
D O I
10.1002/nbm.4364
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Long acquisition times due to intrinsically low signal-to-noise ratio and the need for highly homogeneousB(0)field make MRS particularly susceptible to motion or scanner instability compared with MRI. Motion-induced changes in both localization and shimming (ieB(0)homogeneity) degrade MRS data quality. To mitigate the effects of motion three approaches can be employed: (1) subject immobilization, (2) retrospective correction, and (3) prospective real-time correction using internal and/or external tracking methods. Prospective real-time correction methods can simultaneously update localization and theB(0)field to improve MRS data quality. While localization errors can be corrected with both internal (navigators) and external (optical camera, NMR probes) tracking methods, theB(0)field correction requires internal navigator methods to measure theB(0)field inside the imaged volume and the possibility to update the scanner shim hardware in real time. Internal and external tracking can rapidly update the MRS localization with submillimeter and subdegree precision, while scanner frequency and first-order shims of scanner hardware can be updated by internal methods every sequence repetition. These approaches are most well developed for neuroimaging, for which rigid transformation is primarily applicable. Real-time correction greatly improves the stability of MRS acquisition and quantification, as shown in clinical studies on subjects prone to motion, including children and patients with movement disorders, enabling robust measurement of metabolite signals including those with low concentrations, such as gamma-aminobutyric acid and glutathione. Thus, motion correction is recommended for MRS users and calls for tighter integration and wider availability of such methods by MR scanner manufacturers.
引用
收藏
页数:15
相关论文
共 50 条
[31]   Comparison of baseline correction algorithms for in vivo 1H-MRS [J].
Pasmino, Diego ;
Slotboom, Johannes ;
Schweisthal, Brigitte ;
Guevara, Pamela ;
Valenzuela, Waldo ;
Pino, Esteban J. .
NMR IN BIOMEDICINE, 2024, 37 (11)
[32]   FSE Compensated Motion Correction for MRI Using Data Driven Methods [J].
Levac, Brett ;
Kumar, Sidharth ;
Kardonik, Sofia ;
Tamir, Jonathan I. .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VI, 2022, 13436 :707-716
[33]   Motion detection and correction for carotid MRI using a markerless optical system [J].
Liu, Jin ;
Wang, Chunyao ;
Wang, Jinnan ;
Zhang, Chen ;
Wu, Yifan ;
Balu, Niranjan ;
Qi, Haikun ;
Zhang, Qiang ;
Chen, Huijun ;
Yuan, Chun .
MAGNETIC RESONANCE IMAGING, 2022, 94 :161-167
[34]   Markerless high-frequency prospective motion correction for neuroanatomical MRI [J].
Frost, Robert ;
Wighton, Paul ;
Karahanoglu, F. Isik ;
Robertson, Richard L. ;
Grant, P. Ellen ;
Fischl, Bruce ;
Tisdall, M. Dylan ;
van der Kouwe, Andre .
MAGNETIC RESONANCE IN MEDICINE, 2019, 82 (01) :126-144
[35]   Prospective motion correction in functional MRI [J].
Zaitsev, Maxim ;
Akin, Burak ;
Levan, Pierre ;
Knowles, Benjamin R. .
NEUROIMAGE, 2017, 154 :33-42
[36]   MR spectroscopy using static higher order shimming with dynamic linear terms (HOS-DLT) for improved water suppression, interleaved MRS-fMRI, and navigator-based motion correction at 7T [J].
Boer, Vincent O. ;
Andersen, Mads ;
Lind, Anna ;
Lee, Nam Gyun ;
Marsman, Anouk ;
Petersen, Esben T. .
MAGNETIC RESONANCE IN MEDICINE, 2020, 84 (03) :1101-1112
[37]   Optical tracking with two markers for robust prospective motion correction for brain imaging [J].
Singh, Aditya ;
Zahneisen, Benjamin ;
Keating, Brian ;
Herbst, Michael ;
Chang, Linda ;
Zaitsev, Maxim ;
Ernst, Thomas .
MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2015, 28 (06) :523-534
[38]   False fMRI Activation After Motion Correction [J].
Yakupov, Renat ;
Lei, Juan ;
Hoffmann, Michael B. ;
Speck, Oliver .
HUMAN BRAIN MAPPING, 2017, 38 (09) :4497-4510
[39]   Navigator Accuracy Requirements for Prospective Motion Correction [J].
Maclaren, Julian ;
Speck, Oliver ;
Stucht, Daniel ;
Schulze, Peter ;
Hennig, Juergen ;
Zaitsev, Maxim .
MAGNETIC RESONANCE IN MEDICINE, 2010, 63 (01) :162-170
[40]   MRI with TRELLIS: a novel approach to motion correction [J].
Maclaren, Julian R. ;
Bones, Philip J. ;
Millane, R. P. ;
Watts, Richard .
MAGNETIC RESONANCE IMAGING, 2008, 26 (04) :474-483