Motion correction methods for MRS: experts' consensus recommendations

被引:32
|
作者
Andronesi, Ovidiu C. [1 ]
Bhattacharyya, Pallab K. [2 ]
Bogner, Wolfgang [3 ]
Choi, In-Young [4 ]
Hess, Aaron T. [5 ]
Lee, Phil [6 ]
Meintjes, Ernesta M. [7 ]
Tisdall, M. Dylan [8 ]
Zaitzev, Maxim [9 ,10 ]
van der Kouwe, Andre [1 ]
机构
[1] Harvard Med Sch, Massachusetts Gen Hosp, Dept Radiol, Athinoula A Martinos Ctr Biomed Imaging, Thirteenth St, Boston, MA 02129 USA
[2] Cleveland Clin, Imaging Inst, Cleveland, OH 44106 USA
[3] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, High Field MR Ctr, Vienna, Austria
[4] Univ Kansas, Med Ctr, Dept Neurol, Hoglund Biomed Imaging Ctr, Kansas City, KS 66103 USA
[5] Univ Oxford, Univ Oxford Ctr Clin Magnet Resonance Res, Div Cardiovasc Med, Oxford, England
[6] Univ Kansas, Med Ctr, Dept Radiol, Hoglund Biomed Imaging Ctr, Kansas City, KS 66103 USA
[7] Univ Cape Town, Div Biomed Engn, Dept Human Biol, Biomed Engn Res Ctr,Fac Hlth Sci, Cape Town, South Africa
[8] Univ Penn, Dept Radiol, Perelman Sch Med, Philadelphia, PA 19104 USA
[9] Univ Freiburg, Dept Radiol, Med Ctr, Med Phys, Freiburg, Germany
[10] Med Univ Vienna, High Field Magnet Resonance Ctr, Ctr Med Phys & Biomed Engn, Vienna, Austria
基金
奥地利科学基金会; 新加坡国家研究基金会;
关键词
Metabolites-neurochemistry; motion correction; MRS; navigator; NMR probes; optical tracking; real time; shim correction; REAL-TIME MOTION; RESONANCE-SPECTROSCOPY; HUMAN BRAIN; WATER-SUPPRESSION; SPECTRAL QUALITY; VOLUMETRIC NAVIGATORS; PROTON SPECTROSCOPY; SIGNAL LOSS; FREQUENCY; ARTIFACTS;
D O I
10.1002/nbm.4364
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Long acquisition times due to intrinsically low signal-to-noise ratio and the need for highly homogeneousB(0)field make MRS particularly susceptible to motion or scanner instability compared with MRI. Motion-induced changes in both localization and shimming (ieB(0)homogeneity) degrade MRS data quality. To mitigate the effects of motion three approaches can be employed: (1) subject immobilization, (2) retrospective correction, and (3) prospective real-time correction using internal and/or external tracking methods. Prospective real-time correction methods can simultaneously update localization and theB(0)field to improve MRS data quality. While localization errors can be corrected with both internal (navigators) and external (optical camera, NMR probes) tracking methods, theB(0)field correction requires internal navigator methods to measure theB(0)field inside the imaged volume and the possibility to update the scanner shim hardware in real time. Internal and external tracking can rapidly update the MRS localization with submillimeter and subdegree precision, while scanner frequency and first-order shims of scanner hardware can be updated by internal methods every sequence repetition. These approaches are most well developed for neuroimaging, for which rigid transformation is primarily applicable. Real-time correction greatly improves the stability of MRS acquisition and quantification, as shown in clinical studies on subjects prone to motion, including children and patients with movement disorders, enabling robust measurement of metabolite signals including those with low concentrations, such as gamma-aminobutyric acid and glutathione. Thus, motion correction is recommended for MRS users and calls for tighter integration and wider availability of such methods by MR scanner manufacturers.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Motion correction and frequency stabilization for MRS of the human spinal cord
    Hock, Andreas
    Henning, Anke
    NMR IN BIOMEDICINE, 2016, 29 (04) : 490 - 498
  • [2] Preprocessing, analysis and quantification in single-voxel magnetic resonance spectroscopy: experts' consensus recommendations
    Near, Jamie
    Harris, Ashley D.
    Juchem, Christoph
    Kreis, Roland
    Marjanska, Malgorzata
    Oz, Gulin
    Slotboom, Johannes
    Wilson, Martin
    Gasparovic, Charles
    NMR IN BIOMEDICINE, 2021, 34 (05)
  • [3] Single-voxel MRS with prospective motion correction and retrospective frequency correction
    Zaitsev, M.
    Speck, O.
    Hennig, J.
    Buechert, M.
    NMR IN BIOMEDICINE, 2010, 23 (03) : 325 - 332
  • [4] Motion correction in magnetic resonance spectroscopy
    Saleh, Muhammad G.
    Edden, Richard A. E.
    Chang, Linda
    Ernst, Thomas
    MAGNETIC RESONANCE IN MEDICINE, 2020, 84 (05) : 2312 - 2326
  • [5] Terminology and concepts for the characterization of in vivo MR spectroscopy methods and MR spectra: Background and experts' consensus recommendations
    Kreis, Roland
    Boer, Vincent
    Choi, In-Young
    Cudalbu, Cristina
    de Graaf, Robin A.
    Gasparovic, Charles
    Heerschap, Arend
    Krssak, Martin
    Lanz, Bernard
    Maudsley, Andrew A.
    Meyerspeer, Martin
    Near, Jamie
    Oz, Gulin
    Posse, Stefan
    Slotboom, Johannes
    Terpstra, Melissa
    Tkac, Ivan
    Wilson, Martin
    Bogner, Wolfgang
    NMR IN BIOMEDICINE, 2021, 34 (05)
  • [6] B0shimming for in vivo magnetic resonance spectroscopy: Experts' consensus recommendations
    Juchem, Christoph
    Cudalbu, Cristina
    de Graaf, Robin A.
    Gruetter, Rolf
    Henning, Anke
    Hetherington, Hoby P.
    Boer, Vincent O.
    NMR IN BIOMEDICINE, 2021, 34 (05)
  • [7] Prospective motion correction for cervical spinal cord MRS
    Adanyeguh, Isaac M.
    Henry, Pierre-Gilles
    Deelchand, Dinesh K.
    MAGNETIC RESONANCE IN MEDICINE, 2024, 91 (01) : 19 - 27
  • [8] Water and lipid suppression techniques for advanced 1H MRS and MRSI of the human brain: Experts' consensus recommendations
    Tkac, Ivan
    Deelchand, Dinesh
    Dreher, Wolfgang
    Hetherington, Hoby
    Kreis, Roland
    Kumaragamage, Chathura
    Povazan, Michal
    Spielman, Daniel M.
    Strasser, Bernhard
    de Graaf, Robin A.
    NMR IN BIOMEDICINE, 2021, 34 (05)
  • [9] Methodological consensus on clinical proton MRS of the brain: Review and recommendations
    Wilson, Martin
    Andronesi, Ovidiu
    Barker, Peter B.
    Bartha, Robert
    Bizzi, Alberto
    Bolan, Patrick J.
    Brindle, Kevin M.
    Choi, In-Young
    Cudalbu, Cristina
    Dydak, Ulrike
    Emir, Uzay E.
    Gonzalez, Ramon G.
    Gruber, Stephan
    Gruetter, Rolf
    Gupta, Rakesh K.
    Heerschap, Arend
    Henning, Anke
    Hetherington, Hoby P.
    Huppi, Petra S.
    Hurd, Ralph E.
    Kantarci, Kejal
    Kauppinen, Risto A.
    Klomp, Dennis W. J.
    Kreis, Roland
    Kruiskamp, Marijn J.
    Leach, Martin O.
    Lin, Alexander P.
    Luijten, Peter R.
    Marjanska, Malgorzata
    Maudsley, Andrew A.
    Meyerhoff, Dieter J.
    Mountford, Carolyn E.
    Mullins, Paul G.
    Murdoch, James B.
    Nelson, Sarah J.
    Noeske, Ralph
    Oz, Gulin
    Pan, Julie W.
    Peet, Andrew C.
    Poptani, Harish
    Posse, Stefan
    Ratai, Eva-Maria
    Salibi, Nouha
    Scheenen, Tom W. J.
    Smith, Ian C. P.
    Soher, Brian J.
    Tkac, Ivan
    Vigneron, Daniel B.
    Howe, Franklyn A.
    MAGNETIC RESONANCE IN MEDICINE, 2019, 82 (02) : 527 - 550
  • [10] Advanced magnetic resonance spectroscopic neuroimaging: Experts' consensus recommendations
    Maudsley, Andrew A.
    Andronesi, Ovidiu C.
    Barker, Peter B.
    Bizzi, Alberto
    Bogner, Wolfgang
    Henning, Anke
    Nelson, Sarah J.
    Posse, Stefan
    Shungu, Dikoma C.
    Soher, Brian J.
    NMR IN BIOMEDICINE, 2021, 34 (05)