Electronic structure, bonding and phonon modes in the negative thermal expansion materials of Cd(CN)2 and Zn(CN)2

被引:69
作者
Ding, Pei [1 ,2 ]
Liang, E. J. [1 ]
Jia, Yu [1 ]
Du, Z. Y. [1 ]
机构
[1] Zhengzhou Univ, Sch Phys & Engn, Zhengzhou 450052, Peoples R China
[2] Zhengzhou Inst Aeronaut Ind Management, Dept Math & Phys, Zhengzhou 450015, Peoples R China
关键词
D O I
10.1088/0953-8984/20/27/275224
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The disordered configuration, band structures, density of states, Mulliken population, elastic constants, zone center optic phonon modes and their Gruneisen parameters of M(CN)(2) (M = Cd, Zn) have been studied for possible cyanide-ordering patterns by the first-principles plane-wave pseudopotential method based on density functional theory. Total energy calculations predict that MC(2)N(2)-MC(2)N(2) is the most favorable configuration for Cd(CN)(2) whereas all three possible configurations are near equally favorable for Zn(CN)(2). Effective charges and bond order analyses reveal that the M(CN)(2) (M = Cd, Zn) frameworks include much stiffer C N and weaker M-C/N bonds, which account for the flexing of the M-CN-M linkage during the transverse motion of the cyanide-bridge. The transverse translational and the librational modes give rise to negative Gruneisen parameters and therefore contribute to the negative thermal expansion. Transverse vibrations of the C and N atoms in the same (transverse translational modes) or opposite (librational modes) directions have the same effect of drawing the anchoring metal atoms closer. Among all the optical phonon modes, the lowest-energy transverse translational optical modes which are neither Raman nor infrared active in Cd(CN)(2) and Zn(CN)(2) give rise to the largest contribution to the negative thermal expansion.
引用
收藏
页数:8
相关论文
共 37 条
[1]   Phase transition and negative thermal expansion in tetragonal NbOPO4 [J].
Amos, TG ;
Yokochi, A ;
Sleight, AW .
JOURNAL OF SOLID STATE CHEMISTRY, 1998, 141 (01) :303-307
[2]   Negative thermal expansion in orthorhombic NbOPO4 [J].
Amos, TG ;
Sleight, AW .
JOURNAL OF SOLID STATE CHEMISTRY, 2001, 160 (01) :230-238
[3]   Negative thermal expansion in cuprite-type compounds:: A combined synchrotron XRPD, EXAFS, and computational study of Cu2O and Ag2O [J].
Artioli, Gilberto ;
Dapiaggi, Monica ;
Fornasini, Paolo ;
Sanson, Andrea ;
Rocca, Francesco ;
Merli, Marcello .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2006, 67 (9-10) :1918-1922
[4]   Exceptional negative thermal expansion in AlPO4-17 [J].
Attfield, MP ;
Sleight, AW .
CHEMISTRY OF MATERIALS, 1998, 10 (07) :2013-2019
[5]   Phonons and related crystal properties from density-functional perturbation theory [J].
Baroni, S ;
de Gironcoli, S ;
Dal Corso, A ;
Giannozzi, P .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :515-562
[6]   Synthetic routes to Ga(CN)(3) and MGa(CN)(4) (M=Li, Cu) framework structures [J].
Brousseau, LC ;
Williams, D ;
Kouvetakis, J ;
OKeeffe, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (27) :6292-6296
[7]   Insight into the structure of silver cyanide from 13C and 15N solid-state NMR spectroscopy [J].
Bryce, DL ;
Wasylishen, RE .
INORGANIC CHEMISTRY, 2002, 41 (16) :4131-4138
[8]   High-pressure properties of TiP2O7, ZrP2O7 and ZrV2O7 [J].
Carlson, S ;
Andersen, AMK .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2001, 34 :7-12
[9]   Low energy phonons in the NTE compounds Zn(CN)2 and ZnPt(CN)6 [J].
Chapman, Karena W. ;
Hagen, Mark ;
Kepert, Cameron J. ;
Manuel, Pascal .
PHYSICA B-CONDENSED MATTER, 2006, 385 :60-62
[10]   Compositional dependence of negative thermal expansion in the Prussian blue analogues MIIPtIV(CN)6 (M = Mn, Fe, Co, Ni, Cu, Zn, Cd) [J].
Chapman, Karena W. ;
Chupas, Peter J. ;
Kepert, Cameron J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (21) :7009-7014