QUASI-NEGATIVE HOLOMORPHIC SECTIONAL CURVATURE AND POSITIVITY OF THE CANONICAL BUNDLE

被引:30
作者
Diverio, Simone [1 ]
Trapani, Stefano [2 ]
机构
[1] Sapienza Univ Rome, Ist Guido Castelnuovo, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[2] Univ Roma Tor Vergata, Via Ric Sci 1, I-00133 Rome, Italy
关键词
Holomorphic sectional curvature; Monge-Ampere equation; canonical bundle;
D O I
10.4310/jdg/1549422103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if a compact complex manifold admits a Kahler metric whose holomorphic sectional curvature is everywhere non-positive and strictly negative in at least one point, then its canonical bundle is positive. This answers in the affirmative to a question first asked by S.-T. Yau.
引用
收藏
页码:303 / 314
页数:12
相关论文
共 19 条
[1]   Monge-Ampere equations in big cohomology classes [J].
Boucksom, Sebastien ;
Eyssidieux, Philippe ;
Guedj, Vincent ;
Zeriahi, Ahmed .
ACTA MATHEMATICA, 2010, 205 (02) :199-262
[2]  
Debarre O., 2001, UNIVERSITEX
[3]  
Demailly J.-P., 1997, P S PURE MATH, V62, P285
[4]   Numerical characterization of the Kahler cone of a compact Kahler manifold [J].
Demailly, JP ;
Paun, M .
ANNALS OF MATHEMATICS, 2004, 159 (03) :1247-1274
[5]   Viscosity Solutions to Degenerate Complex Monge-Ampere Equations [J].
Eyssidieux, Philippe ;
Guedj, Vincent ;
Zeriahi, Ahmed .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (08) :1059-1094
[6]   Intrinsic capacities on compact Kahler manifolds [J].
Guedj, V ;
Zeriahi, A .
JOURNAL OF GEOMETRIC ANALYSIS, 2005, 15 (04) :607-639
[7]  
Guedj V, 2017, EMS TRACTS MATH, V26, P1, DOI 10.4171/167
[8]  
Heier G., 2017, REDUCTION MANIFOLDS
[9]  
Heier G, 2016, J DIFFER GEOM, V104, P419
[10]  
Heier G, 2010, MATH RES LETT, V17, P1101