Solutions of 3D Navier-Stokes benchmark problems with adaptive finite elements

被引:54
作者
Braack, M [1 ]
Richter, T [1 ]
机构
[1] Heidelberg Univ, Inst Appl Math, D-69120 Heidelberg, Germany
关键词
Navier Stokes equations;
D O I
10.1016/j.compfluid.2005.02.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a numerical study of 3D Navier-Stokes benchmark problems defined within the DFG high-priority research program in 1996. Specifically, we investigate the accuracy of an equal-order finite element method based on piecewise quadratic shape functions with local projections stabilization on locally refined meshes for stationary laminar flows around an obstacle with circular and square cross-section. It turns out that on globally refined meshes the new stabilization method is comparable to Q(2)/P-1(disc) element which was the best one in recent investigations of John [Int J Numer Math Fluids 2002,40:775-98]. Furthermore, on locally refined meshes we are able to produce reference values for the geometry with singularities (square cross-section) which were still unknown up to now. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:372 / 392
页数:21
相关论文
共 15 条
[1]  
Becker R, 2001, ACT NUMERIC, V10, P1, DOI 10.1017/S0962492901000010
[2]  
Becker R, 2004, NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, P123
[3]   A finite element pressure gradient stabilization for the Stokes equations based on local projections [J].
Becker, R ;
Braack, M .
CALCOLO, 2001, 38 (04) :173-199
[4]  
Becker R, 2000, NUMER LINEAR ALGEBR, V7, P363, DOI 10.1002/1099-1506(200009)7:6<363::AID-NLA202>3.0.CO
[5]  
2-V
[6]  
Becker R., 1996, E W J NUMER MATH, V4, P237
[7]  
BRAACK M, 2004, THESIS U HEIDELBERG
[8]  
BRAACK M, 200445 U HEID
[9]  
Braack M., 1998, THESIS U HEIDELBERG
[10]   Edge residuals dominate A posteriori error estimates for low order finite element methods [J].
Carsten, C ;
Verfürth, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (05) :1571-1587