Dirac fields and thermal effects in the de Sitter universe

被引:53
作者
Bartesaghi, P
Gazeau, JP
Moschella, U
Takook, MV
机构
[1] Univ Insubria, Dipartimento Sci Matemat Fis & Chim, I-22100 Como, Italy
[2] Univ Paris 07, Lab Phys Theor Mat Condensee, F-75251 Paris 05, France
[3] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy
[4] Razi Univ, Dept Phys, Khorramshahr, Iran
[5] Res Inst Fundamental Sci, Tabriz 51664, Iran
关键词
D O I
10.1088/0264-9381/18/21/302
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a study of Dirac quantum fields in a four-dimensional de Sitter spacetime. The theory is based on the requirement of precise analyticity properties of the waves and the correlation functions in the complexification of the de Sitter manifold. Holomorphic de Sitter spinorial plane waves are introduced in this way and used to construct the two-point functions, whose properties are fully characterized. The physical interpretation of the analyticity properties of Wightman's functions in terms of a KMS-type thermal condition is also given.
引用
收藏
页码:4373 / 4394
页数:22
相关论文
共 35 条
[1]   VACUUM STATES IN DE-SITTER SPACE [J].
ALLEN, B .
PHYSICAL REVIEW D, 1985, 32 (12) :3136-3149
[2]  
[Anonymous], 1987, GEN PRINCIPLES QUANT
[3]  
Bateman H., 1954, Higher Transcendental Functions, VI
[4]  
BERTOLA M, 2001, UNPUB DESITTER MASSL
[5]  
Birrell N. D., 1982, Quantum fields in curved space
[6]   Connection between the harmonic analysis on the sphere and the harmonic analysis on the one-sheeted hyperboloid: An analytic continuation viewpoint .1. [J].
Bros, J ;
Viano, GA .
FORUM MATHEMATICUM, 1996, 8 (05) :621-658
[7]   QUANTUM-FIELD THEORY IN THE DE SITTER UNIVERSE [J].
BROS, J ;
GAZEAU, JP ;
MOSCHELLA, U .
PHYSICAL REVIEW LETTERS, 1994, 73 (13) :1746-1749
[8]   Analyticity properties and thermal effects for general quantum field theory on de Sitter space-time [J].
Bros, J ;
Epstein, H ;
Moschella, U .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 196 (03) :535-570
[9]   Two-point functions and quantum fields in de Sitter universe [J].
Bros, J ;
Moschella, U .
REVIEWS IN MATHEMATICAL PHYSICS, 1996, 8 (03) :327-391
[10]  
BROS J, 2001, GEOMETRIE COMPLEXE 1