On the upper embedding of Steiner triple systems and Latin squares

被引:0
作者
Griggs, Terry S. [1 ]
McCourt, Thomas A. [2 ]
Siran, Jozef [1 ,3 ]
机构
[1] Open Univ, Sch Math & Stat, Milton Keynes MK7 6AA, Bucks, England
[2] Craigslea State High Sch, Brisbane, Qld 4032, Australia
[3] Slovak Univ Technol Bratislava, Bratislava 81005, Slovakia
关键词
Upper embedding; Steiner triple system; Latin square; MAXIMUM GENUS EMBEDDINGS;
D O I
10.26493/1855-3974.1959.9c7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that for any prescribed orientation of the triples of either a Steiner triple system or a Latin square of odd order, there exists an embedding in an orientable surface with the triples forming triangular faces and one extra large face.
引用
收藏
页码:127 / 135
页数:9
相关论文
共 5 条
  • [1] Maximum genus embeddings of Steiner triple systems
    Grannell, MJ
    Griggs, TS
    Sirán, J
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (3-4) : 401 - 416
  • [2] MAXIMUM GENUS EMBEDDINGS OF LATIN SQUARES
    Griggs, Terry S.
    Psomas, Constantinos
    Siran, Jozef
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2018, 60 (02) : 495 - 504
  • [3] JUNGERMAN M, 1978, T AM MATH SOC, V241, P401
  • [4] Kirkman T., 1847, Camb. Dublin Math. J., V2, P191
  • [5] XUONG NH, 1979, J COMB THEORY B, V26, P217, DOI 10.1016/0095-8956(79)90058-3