BSTA: a targeted approach combines bulked segregant analysis with next-generation sequencing and de novo transcriptome assembly for SNP discovery in sunflower

被引:39
作者
Livaja, Maren [1 ]
Wang, Yu [1 ]
Wieckhorst, Silke [1 ]
Haseneyer, Grit [1 ]
Seidel, Michael [2 ]
Hahn, Volker [3 ]
Knapp, Steven J. [4 ]
Taudien, Stefan [5 ]
Schoen, Chris-Carolin [1 ]
Bauer, Eva [1 ]
机构
[1] Tech Univ Munich, D-85354 Freising Weihenstephan, Germany
[2] Helmholtz Zentrum Munchen, Inst Bioinformat & Syst Biol MIPS, D-85764 Neuherberg, Germany
[3] Univ Hohenheim, State Plant Breeding Inst, D-70599 Stuttgart, Germany
[4] Univ Georgia, Ctr Appl Genet Technol, Athens, GA 30602 USA
[5] Fritz Lipmann Inst, Leibniz Inst Age Res, D-07745 Jena, Germany
关键词
Bulked segregant transcriptome analysis; 454 next-generation sequencing; Marker enrichment pipeline; De novo transcriptome assembly; Resistance gene candidates; Helianthus argophyllus; Helianthus annuus; Sunflower; Plasmopara halstedii; Pl(ARG); RESISTANCE-GENE-CLUSTER; READ ALIGNMENT; GENOME; MAP; MARKERS; GABIPD; VIRUS; TOOL; PCR;
D O I
10.1186/1471-2164-14-628
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Sunflower belongs to the largest plant family on earth, the genomically poorly explored Compositae. Downy mildew Plasmopara halstedii (Farlow) Berlese & de Toni is one of the major diseases of cultivated sunflower (Helianthus annuus L.). In the search for new sources of downy mildew resistance, the locus Pl(ARG) on linkage group 1 (LG1) originating from H. argophyllus is promising since it confers resistance against all known races of the pathogen. However, the mapping resolution in the Pl(ARG) region is hampered by significantly suppressed recombination and by limited availability of polymorphic markers. Here we examined a strategy developed for the enrichment of molecular markers linked to this specific genomic region. We combined bulked segregant analysis (BSA) with next-generation sequencing (NGS) and de novo assembly of the sunflower transcriptome for single nucleotide polymorphism (SNP) discovery in a sequence resource combining reads originating from two sunflower species, H. annuus and H. argophyllus. Results: A computational pipeline developed for SNP calling and pattern detection identified 219 candidate genes. For a proof of concept, 42 resistance gene-like sequences were subjected to experimental SNP validation. Using a high-resolution mapping population, 12 SNP markers were mapped to LG1. We successfully verified candidate sequences either co-segregating with or closely flanking Pl(ARG). Conclusions: This study is the first successful example to improve bulked segregant analysis with de novo transcriptome assembly using next generation sequencing. The BSTA pipeline we developed provides a useful guide for similar studies in other non-model organisms. Our results demonstrate this method is an efficient way to enrich molecular markers and to identify candidate genes in a specific mapping interval.
引用
收藏
页数:10
相关论文
共 43 条
[31]   De novo 454 sequencing of barcoded BAC pools for comprehensive gene survey and genome analysis in the complex genome of barley [J].
Steuernagel, Burkhard ;
Taudien, Stefan ;
Gundlach, Heidrun ;
Seidel, Michael ;
Ariyadasa, Ruvini ;
Schulte, Daniela ;
Petzold, Andreas ;
Felder, Marius ;
Graner, Andreas ;
Scholz, Uwe ;
Mayer, Klaus F. X. ;
Platzer, Matthias ;
Stein, Nils .
BMC GENOMICS, 2009, 10
[32]   Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis [J].
Tan, Xiaoping ;
Meyers, Blake C. ;
Kozik, Alexander ;
Al West, Marilyn ;
Morgante, Michele ;
St Clair, Dina A. ;
Bent, Andrew F. ;
Michelmore, Richard W. .
BMC PLANT BIOLOGY, 2007, 7 (1)
[33]   SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development [J].
Thiel, T ;
Kota, R ;
Grosse, I ;
Stein, N ;
Graner, A .
NUCLEIC ACIDS RESEARCH, 2004, 32 (01) :e5
[34]   Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat [J].
Trick, Martin ;
Adamski, Nikolai Maria ;
Mugford, Sarah G. ;
Jiang, Cong-Cong ;
Febrer, Melanie ;
Uauy, Cristobal .
BMC PLANT BIOLOGY, 2012, 12
[35]   GabiPD - the GABI Primary Database integrates plant proteomic data with gene-centric information [J].
Usadel, Bjoern ;
Schwacke, Rainer ;
Nagel, Axel ;
Kersten, Birgit .
FRONTIERS IN PLANT SCIENCE, 2012, 3
[36]   Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode [J].
van der Vossen, EAG ;
van der Voort, JNAMR ;
Kanyuka, K ;
Bendahmane, A ;
Sandbrink, H ;
Baulcombe, DC ;
Bakker, J ;
Stiekema, WJ ;
Klein-Lankhorst, RM .
PLANT JOURNAL, 2000, 23 (05) :567-576
[37]  
Van Ooijen J.W., 2006, JOINMAP4 SOFTWARE CA
[38]  
Wei FS, 2000, GENETICS, V154, P953
[39]   Bulk Segregant Analysis by High-Throughput Sequencing Reveals a Novel Xylose Utilization Gene from Saccharomyces cerevisiae [J].
Wenger, Jared W. ;
Schwartz, Katja ;
Sherlock, Gavin .
PLOS GENETICS, 2010, 6 (05) :18
[40]   Fine mapping of the sunflower resistance locus Pl ARG introduced from the wild species Helianthus argophyllus [J].
Wieckhorst, S. ;
Bachlava, E. ;
Dussle, C. M. ;
Tang, S. ;
Gao, W. ;
Saski, C. ;
Knapp, S. J. ;
Schoen, C. -C. ;
Hahn, V. ;
Bauer, E. .
THEORETICAL AND APPLIED GENETICS, 2010, 121 (08) :1633-1644