Function of TiO2 Lattice Defects toward Photocatalytic Processes: View of Electronic Driven Force

被引:31
作者
Cui, Huanan [1 ]
Liu, Hong [1 ]
Shi, Jianying [1 ]
Wang, Chuan [2 ]
机构
[1] Sun Yat Sen Univ, Sch Chem & Chem Engn, Guangdong Higher Educ Inst, Key Lab Environm & Energy Chem, Guangzhou 510275, Guangdong, Peoples R China
[2] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 401122, Peoples R China
关键词
DOPED TITANIUM-DIOXIDE; OXYGEN-VACANCY; ELECTRICAL-PROPERTIES; SINGLE-CRYSTAL; SEMICONDUCTING PROPERTIES; REDUCED TIO2(110); SURFACE-DEFECTS; CHARGE-CARRIERS; LOW-TEMPERATURE; GOLD CLUSTERS;
D O I
10.1155/2013/364802
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Oxygen vacancies and Ti-related defects (OTDs) are the main lattice defects of TiO2, which have great influence on its photocatalytic activity. To understand the relationship between the defects and photocatalytic activities, detailed discussions based on the electronic driven force provided by these defects are carried out during the three commonly accepted processes in photocatalytic reactions. It is found that these defects inevitably (i) influence the energy structure of the pristine TiO2 as the isolate acceptor/donor level or hybrid with the original orbital, (ii) provide a disordered short-range force that confuses the charge carriers transferring to surface active sites, (iii) act not only as the surface active sites for trapping the charge carriers but also as the main chemisorption sites for O-2, H2O, and organic species. These effects of the defects make them one of the key factors that determine the efficiency of heterogeneous photocatalysis. Clarifying the role of the defects will further facilitate the exploration and the construction of high-performance photocatalysts for practical applications.
引用
收藏
页数:16
相关论文
共 126 条
[1]   Defect energy levels in density functional calculations: Alignment and band gap problem [J].
Alkauskas, Audrius ;
Broqvist, Peter ;
Pasquarello, Alfredo .
PHYSICAL REVIEW LETTERS, 2008, 101 (04)
[2]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[3]   Influence of subsurface Ti interstitials on the reactivity of anatase (101) [J].
Aschauer, Ulrich ;
Selloni, Annabella .
PHYSICAL CHEMISTRY OF INTERFACES AND NANOMATERIALS IX, 2010, 7758
[4]   Influence of Subsurface Defects on the Surface Reactivity of TiO2: Water on Anatase (101) [J].
Aschauer, Ulrich ;
He, Yunbin ;
Cheng, Hongzhi ;
Li, Shao-Chun ;
Diebold, Ulrike ;
Selloni, Annabella .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (02) :1278-1284
[5]   Mobility of electronic charge carriers in titanium dioxide [J].
Bak, T. ;
Nowotny, M. K. ;
Sheppard, L. R. ;
Nowotny, J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (33) :12981-12987
[6]   Charge transport in Cr-doped titanium dioxide [J].
Bak, T. ;
Nowotny, M. K. ;
Sheppard, L. R. ;
Nowotny, J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (18) :7255-7262
[7]   Defect disorder of titanium dioxide [J].
Bak, T. ;
Nowotny, J. ;
Nowotny, M. K. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (43) :21560-21567
[8]   Defect chemistry and semiconducting properties of titanium dioxide: III. Mobility of electronic charge carriers [J].
Bak, T ;
Nowotny, J ;
Rekas, M ;
Sorrell, CC .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2003, 64 (07) :1069-1087
[9]   Direct visualization of defect-mediated dissociation of water on TiO2(110) [J].
Bikondoa, O ;
Pang, CL ;
Ithnin, R ;
Muryn, CA ;
Onishi, H ;
Thornton, G .
NATURE MATERIALS, 2006, 5 (03) :189-192
[10]   Surface chemistry of 2-propanol on TiO2(110):: Low- and high-temperature dehydration, isotope effects, and influence of local surface structure [J].
Bondarchuk, Oleksandr ;
Kim, Yu Kwon ;
White, J. M. ;
Kim, Jooho ;
Kay, Bruce D. ;
Dohnalek, Zdenek .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (29) :11059-11067