The Number-Phase and Position-Momentum Distribution Functions

被引:1
作者
Kiyuna, Masato [1 ]
Kakazu, Kiyotaka [1 ]
Sakai, Eijiro [1 ]
机构
[1] Univ Ryukyus, Dept Phys & Earth Sci, Okinawa 9030213, Japan
来源
PROGRESS OF THEORETICAL PHYSICS | 2009年 / 121卷 / 02期
关键词
QUANTUM-MECHANICS; NONCOMMUTING OPERATORS; WIGNER FUNCTION; SPACE FORMULATION; CALCULUS; ANGLE;
D O I
10.1143/PTP.121.217
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the relationship between the number-phase and position-momentum quantum distribution functions using the extended Liouville space. We also propose an extended Ban's number-phase distribution function in the extended space, and show that the other distribution functions can be expressed in terms of Ban's function. Moreover, two new number-phase distribution functions, the Born-Jordan and the Cohen distribution functions, are given in a unified manner.
引用
收藏
页码:217 / 239
页数:23
相关论文
共 43 条
[1]   CALCULUS FOR FUNCTIONS OF NONCOMMUTING OPERATORS AND GENERAL PHASE-SPACE METHODS IN QUANTUM MECHANICS .2. QUANTUM MECHANICS IN PHASE SPACE [J].
AGARWAL, GS ;
WOLF, E .
PHYSICAL REVIEW D, 1970, 2 (10) :2187-+
[2]   CALCULUS FOR FUNCTIONS OF NONCOMMUTING OPERATORS AND GENERAL PHASE-SPACE METHODS IN QUANTUM MECHANICS .3. A GENERALIZED WICK THEOREM AND MULTITIME MAPPING [J].
AGARWAL, GS ;
WOLF, E .
PHYSICAL REVIEW D, 1970, 2 (10) :2206-&
[4]  
[Anonymous], 1931, DISQUES MAY
[5]   WIGNER FUNCTION AND OTHER DISTRIBUTION-FUNCTIONS IN MOCK PHASE SPACES [J].
BALAZS, NL ;
JENNINGS, BK .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 104 (06) :347-391
[6]   QUANTUM PHASE SUPEROPERATOR [J].
BAN, M .
PHYSICAL REVIEW A, 1995, 51 (03) :2469-2481
[7]   SEMICLASSICAL MECHANICS IN PHASE SPACE - STUDY OF WIGNERS FUNCTION [J].
BERRY, MV .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 287 (1343) :237-271
[8]   WEYL-WIGNER FORMALISM FOR ROTATION-ANGLE AND ANGULAR-MOMENTUM VARIABLES IN QUANTUM-MECHANICS [J].
BIZARRO, JP .
PHYSICAL REVIEW A, 1994, 49 (05) :3255-3276
[9]  
Born M., 1925, Z PHYS, V34, P858, DOI DOI 10.1007/BF01328531
[10]   ORDERED EXPANSIONS IN BOSON AMPLITUDE OPERATORS [J].
CAHILL, KE ;
GLAUBER, RJ .
PHYSICAL REVIEW, 1969, 177 (5P1) :1857-+