Remarks on n-normal Operators

被引:23
作者
Cho, Muneo [1 ]
Lee, Ji Eun [2 ]
Tanahashi, Kotaro [3 ]
Uchiyama, Atsushi [4 ]
机构
[1] Kanagawa Univ, Dept Math, Hiratsuka, Kanagawa 2591293, Japan
[2] Sejong Univ, Dept Math & Stat, Seoul 143747, South Korea
[3] Tohoku Med & Pharmaceut Univ, Dept Math, Sendai, Miyagi 9818558, Japan
[4] Yamagata Univ, Dept Math, Yamagata 9908560, Japan
基金
新加坡国家研究基金会;
关键词
n-normal; polaroid; subscalar;
D O I
10.2298/FIL1815441C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T be a bounded linear operator on a complex Hilbert space and n, m is an element of N. Then T is said to be n-normal if T*T-n= (TT)-T-n* and (n, m)-normal if T*T-m(n) = (TT)-T-n *(m). In this paper, we study several properties of n-normal, (n, m)-normal operators. In particular, we prove that if T is 2-normal with sigma(T) boolean AND (-sigma(T)) subset of {0}, then T is polarloid. Moreover, we study subscalarity of n-normal operators. Also, we prove that if T is (n, m)-normal, then T is decomposable and Weyl's theorem holds for f(T), where f is an analytic function on sigma(T) which is not constant on each of the components of its domain.
引用
收藏
页码:5441 / 5451
页数:11
相关论文
共 10 条
[1]  
Aiena P., 2004, Fredholm and Local Spectral Theory, with Application to Multipliers
[2]   Weyl Type Theorems for Left and Right Polaroid Operators [J].
Aiena, Pietro ;
Aponte, Elvis ;
Balzan, Edixon .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 66 (01) :1-20
[3]  
Alzuraiqi S. A., 2010, General Mathematics Notes, V1, P61
[4]  
CHO M, SPECTRAL PROPERTIES
[5]   INVARIANT SUBSPACES FOR OPERATORS WITH BISHOPS PROPERTY (BETA) AND THICK SPECTRUM [J].
ESCHMEIER, J ;
PRUNARU, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 94 (01) :196-222
[6]  
Laursen K.B., 2000, INTRO LOCAL SPECTRAL, V20
[7]  
PUTINAR M, 1984, J OPERAT THEOR, V12, P385
[8]   AN INEQUALITY FOR AREA OF HYPONORMAL SPECTRA [J].
PUTNAM, CR .
MATHEMATISCHE ZEITSCHRIFT, 1970, 116 (04) :323-&
[9]   HYPONORMAL OPERATORS [J].
STAMPFLI, JG .
PACIFIC JOURNAL OF MATHEMATICS, 1962, 12 (04) :1453-&
[10]   On (n, k)-quasiparanormal operators [J].
Yuan, Jiangtao ;
Ji, Guoxing .
STUDIA MATHEMATICA, 2012, 209 (03) :289-301