Deterministic aperiodic tile sets

被引:12
作者
Kari, J
Papasoglu, P
机构
[1] Univ Iowa, Dept Comp Sci, Iowa City, IA 52242 USA
[2] Univ Paris 11, Dept Math, F-91405 Orsay, France
关键词
D O I
10.1007/s000390050090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Wang tiles are square tiles with colored edges. We construct an aperiodic set of Wang tiles that is strongly deterministic in the sense that any two adjacent edges of a tile determine the tile uniquely. Consequently, the tiling group of this set is not hyperbolic and it acts discretely and co-compactly on a CAT(0) space.
引用
收藏
页码:353 / 369
页数:17
相关论文
共 20 条
[1]  
[Anonymous], 1966, MEM AM MATH SOC
[2]   Nonpositively curved metrics on 2-polyhedra [J].
Ballmann, W ;
Buyalo, S .
MATHEMATISCHE ZEITSCHRIFT, 1996, 222 (01) :97-134
[3]   POLYGONAL COMPLEXES AND COMBINATORIAL GROUP-THEORY [J].
BALLMANN, W ;
BRIN, M .
GEOMETRIAE DEDICATA, 1994, 50 (02) :165-191
[4]  
BALLMANN W, 1995, PUBL MATH-PARIS, V82, P169
[5]  
BANGERT V, 1991, ANN SCI ECOLE NORM S, V24, P605
[6]  
BRIDSON M, EXISTENCE FLAT PLANE
[7]   Finitely presented simple groups and products of trees [J].
Burger, M ;
Mozes, S .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (07) :747-752
[8]   TILING WITH POLYOMINOES AND COMBINATORIAL GROUP-THEORY [J].
CONWAY, JH ;
LAGARIAS, JC .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1990, 53 (02) :183-208
[9]   An aperiodic set of 13 Wang tiles [J].
Culik, K .
DISCRETE MATHEMATICS, 1996, 160 (1-3) :245-251