Massless particles in warped three spaces

被引:7
作者
Barros, M [1 ]
Caballero, M [1 ]
Ortega, M [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Geometria & Topol, E-18071 Granada, Spain
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2006年 / 21卷 / 03期
关键词
total curvature; relativistic particle; generalized Robertson-Walker space-times; timelike convergence condition;
D O I
10.1142/S0217751X06025559
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The model governed by an action measuring the total proper acceleration of trajectories provides a nice framework one to describe the dynamics of massless relativistic particles. In high rigidity cases, metrics with constant curvature, the model is consistent only in spherical three spaces and in three-dimensional anti de Sitter backgrounds, according to a Riemannian or a Lorentzian context, respectively. In contrast to fiat gravitational fields, the existence of nontrivial trajectories are shown in a family of three spaces whose metrics admit a certain degree of symmetry. Such trajectories are included in regions with real presence of matter. An algorithm to obtain them is also designed.
引用
收藏
页码:461 / 473
页数:13
相关论文
共 19 条
[1]   UNIQUENESS OF COMPLETE SPACELIKE HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN GENERALIZED ROBERTSON-WALKER SPACETIMES [J].
ALIAS, LJ ;
ROMERO, A ;
SANCHEZ, M .
GENERAL RELATIVITY AND GRAVITATION, 1995, 27 (01) :71-84
[2]   Frenet-Serret dynamics [J].
Arreaga, G ;
Capovilla, R ;
Guven, J .
CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (23) :5065-5083
[3]   Holography and total charge [J].
Arroyo, J ;
Barros, M ;
Garay, OJ .
JOURNAL OF GEOMETRY AND PHYSICS, 2002, 41 (1-2) :65-72
[4]   Some examples of critical points for the total mean curvature functional [J].
Arroyo, J ;
Barros, M ;
Garay, OJ .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2000, 43 :587-603
[5]   Geometry and dynamics of relativistic particles with rigidity [J].
Barros, M .
GENERAL RELATIVITY AND GRAVITATION, 2002, 34 (06) :837-852
[6]  
Besse A.L., 1987, EINSTEIN MANIFOLDS
[7]   QUANTUM AND OTHER PHYSICS AS SYSTEMS-THEORY [J].
CAIANIELLO, ER .
RIVISTA DEL NUOVO CIMENTO, 1992, 15 (04) :1-65
[8]   THE MODEL OF THE RELATIVISTIC PARTICLE WITH CURVATURE AND TORSION [J].
KUZNETSOV, YA ;
PLYUSHCHAY, MS .
NUCLEAR PHYSICS B, 1993, 389 (01) :181-205
[9]   New examples of Calabi-Bernstein problems for some nonlinear equations [J].
Latorre, JM ;
Romero, A .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2001, 15 (02) :153-163
[10]   Particle with torsion on 3d null-curves [J].
Nersessian, A ;
Manvelyan, R ;
Müller-Kirsten, HJW .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 88 :381-384