Comparison of Density-Matrix Corrections to Density Functional Theory

被引:14
|
作者
Gibney, Daniel [1 ,2 ]
Boyn, Jan-Niklas [1 ,2 ]
Mazziotti, David A. [1 ,2 ]
机构
[1] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[2] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
SELF-INTERACTION ERROR; CONFIGURATION-INTERACTION; ENERGY; THERMOCHEMISTRY; STATES;
D O I
10.1021/acs.jctc.2c00625
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Density functional theory (DFT), one of the most widely utilized methods available to computational chemistry, fails to describe systems with statically correlated electrons. To address this shortcoming, in previous work, we transformed DFT into a one-electron reduced density matrix theory (1-RDMFT) via the inclusion of a quadratic one-electron reduced density matrix (1-RDM) correction. Here, we combine our 1-RDMFT approach with different DFT functionals as well as Hartree-Fock to elucidate the method's dependence on the underlying functional selection. Furthermore, we generalize the information density matrix functional theory (iDMFT), recently developed as a correction to the Hartree-Fock method, by incorporating density functionals in place of the Hartree-Fock functional. We relate iDMFT mathematically to our approach and benchmark the two with a common set of functionals and systems.
引用
收藏
页码:6600 / 6607
页数:8
相关论文
共 50 条
  • [21] Density-functional theory with adaptive pair density: The Gutzwiller approximation as a density functional
    Lorenzana, J.
    Ying, Z-J
    Brosco, V.
    PHYSICAL REVIEW B, 2012, 86 (07)
  • [22] Comparison of the density-matrix renormalization group method applied to fractional quantum Hall systems in different geometries
    Hu, Zi-Xiang
    Papic, Z.
    Johri, S.
    Bhatt, R. N.
    Schmitteckert, Peter
    PHYSICS LETTERS A, 2012, 376 (30-31) : 2157 - 2161
  • [23] Reduced Density-Matrix Approach to Strong Matter-Photon Interaction
    Buchholz, Florian
    Theophilou, Iris
    Nielsen, Soeren E. B.
    Ruggenthaler, Michael
    Rubio, Angel
    ACS PHOTONICS, 2019, 6 (11): : 2694 - 2711
  • [24] Classical density functional theory: The local density approximation
    Jex, Michal
    Lewin, Mathieu
    Madsen, Peter S.
    REVIEWS IN MATHEMATICAL PHYSICS, 2024,
  • [25] Recent Progress in Lattice Density Functional Theory
    Mueller, T. S.
    Toews, W.
    Pastor, G. M.
    COMPUTATION, 2019, 7 (04)
  • [26] Challenges for Density Functional Theory
    Cohen, Aron J.
    Mori-Sanchez, Paula
    Yang, Weitao
    CHEMICAL REVIEWS, 2012, 112 (01) : 289 - 320
  • [27] Stochastic density functional theory
    Fabian, Marcel D.
    Shpiro, Ben
    Raban, Ran
    Neuhauser, Daniel
    Baer, Roi
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2019, 9 (06)
  • [28] Continuous Localized Orbital Corrections to Density Functional Theory: B3LYP-CLOC
    Hall, Michelle Lynn
    Zhang, Jing
    Bochevarov, Arteum D.
    Friesner, Richard A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (12) : 3647 - 3663
  • [29] Density-Matrix Based Extended Lagrangian Born-Oppenheimer Molecular Dynamics
    Niklasson, Anders M. N.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (06) : 3628 - 3640
  • [30] Direct measurement of density-matrix elements using a phase-shifting technique
    Feng, Tianfeng
    Ren, Changliang
    Zhou, Xiaoqi
    PHYSICAL REVIEW A, 2021, 104 (04)