Multivariate temporal dictionary learning for EEG

被引:32
作者
Barthelemy, Q. [1 ,2 ]
Gouy-Pailler, C. [1 ]
Isaac, Y. [1 ]
Souloumiac, A. [1 ]
Larue, A. [1 ]
Mars, J. I. [1 ,2 ]
机构
[1] CEA, LIST, Data Anal Tools Lab, F-91191 Gif Sur Yvette, France
[2] Grenoble INP, UMR CNRS 5216, DIS, GIPSA Lab, F-38402 Grenoble, France
关键词
Dictionary learning; Orthogonal matching pursuit; Multivariate; Shift-invariance; EEG; Evoked potentials; P300; EVENT-RELATED POTENTIALS; MATCHING PURSUIT; SINGLE; DECOMPOSITION; LOCALIZATION; ALGORITHM; SIGNALS; ERPS;
D O I
10.1016/j.jneumeth.2013.02.001
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This article addresses the issue of representing electroencephalographic (EEG) signals in an efficient way. While classical approaches use a fixed Gabor dictionary to analyze EEG signals, this article proposes a data-driven method to obtain an adapted dictionary. To reach an efficient dictionary learning, appropriate spatial and temporal modeling is required. Inter-channels links are taken into account in the spatial multivariate model, and shift-invariance is used for the temporal model. Multivariate learned kernels are informative (a few atoms code plentiful energy) and interpretable (the atoms can have a physiological meaning). Using real EEG data, the proposed method is shown to outperform the classical multichannel matching pursuit used with a Gabor dictionary, as measured by the representative power of the learned dictionary and its spatial flexibility. Moreover, dictionary learning can capture interpretable patterns: this ability is illustrated on real data, learning a P300 evoked potential. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 28
页数:10
相关论文
共 42 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]   Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks [J].
Anderson, CW ;
Stolz, EA ;
Shamsunder, S .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1998, 45 (03) :277-286
[3]  
[Anonymous], 2011, WORKSH STRUCT SPARS
[4]  
[Anonymous], 2007, EEG SIGNAL PROCESSIN, DOI DOI 10.1002/9780470511923
[5]  
[Anonymous], 2009, WAVELET TOUR SIGNAL
[6]   Shift ∧ 2D Rotation Invariant Sparse Coding for Multivariate Signals [J].
Barthelemy, Quentin ;
Larue, Anthony ;
Mayoue, Aurelien ;
Mercier, David ;
Mars, Jerome I. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (04) :1597-1611
[7]   The BCI competition 2003:: Progress and perspectives in detection and discrimination of EEG single trials [J].
Blankertz, B ;
Müller, KR ;
Curio, G ;
Vaughan, TM ;
Schalk, G ;
Wolpaw, JR ;
Schlögl, A ;
Neuper, C ;
Pfurtscheller, G ;
Hinterberger, T ;
Schröder, M ;
Birbaumer, N .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (06) :1044-1051
[8]   Optimizing spatial filters for robust EEG single-trial analysis [J].
Blankertz, Benjamin ;
Tomioka, Ryota ;
Lemm, Steven ;
Kawanabe, Motoaki ;
Mueller, Klaus-Robert .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) :41-56
[9]   A Bayesian method to estimate single-trial event-related potentials with application to the study of the P300 variability [J].
D'Avanzo, Costanza ;
Schiff, Sami ;
Amodio, Piero ;
Sparacino, Giovanni .
JOURNAL OF NEUROSCIENCE METHODS, 2011, 198 (01) :114-124
[10]   TIME FREQUENCY LOCALIZATION OPERATORS - A GEOMETRIC PHASE-SPACE APPROACH [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (04) :605-612