Bifurcation analysis of a metapopulation model with sources and sinks

被引:25
作者
Gyllenberg, M
Osipov, AV
Soderbacka, G
机构
[1] ST PETERSBURG STATE UNIV,FAC MATH & MECH,ST PETERSBURG 198904,RUSSIA
[2] UNIV LULEA,DEPT MATH,S-97187 LULEA,SWEDEN
关键词
D O I
10.1007/BF02433474
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of functions describing the Allee effect and local catastrophes in population dynamics is introduced and the behaviour of the resulting one-dimensional discrete dynamical system is investigated in detail. The main topic of the paper is a treatment of the two-dimensional system arising when an Allee function is coupled with a function describing the population decay in a so-called sink. New types of bifurcation phenomena are discovered and explained. The relevance of the results for metapopulation dynamics is discussed.
引用
收藏
页码:329 / 366
页数:38
相关论文
共 23 条
[11]   BASIN BOUNDARY METAMORPHOSES - CHANGES IN ACCESSIBLE BOUNDARY ORBITS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1987, 24 (1-3) :243-262
[12]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42, DOI DOI 10.1007/978-1-4612-1140-2
[13]  
GUMOWSKI I, 1980, RECURRENCES DISCRETE
[14]  
Gumowski I., 1980, Dynamique Chaotique
[15]   DOES MIGRATION STABILIZE LOCAL-POPULATION DYNAMICS - ANALYSIS OF A DISCRETE METAPOPULATION MODEL [J].
GYLLENBERG, M ;
SODERBACKA, G ;
ERICSSON, S .
MATHEMATICAL BIOSCIENCES, 1993, 118 (01) :25-49
[16]  
GYLLENBERG M, 1995, HABITAT DESTRUCTION
[17]  
HANSKI I, 1995, AM NAT, V147, P527
[18]  
HANSKI I, 1991, METAPOPULATION DYNAM, P3
[19]   ON BEHAVIORS OF TWO-DIMENSIONAL ENDOMORPHISMS: ROLE OF THE CRITICAL CURVES [J].
Mira, Christian ;
Narayaninsamy, Tony .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (01) :187-194
[20]   A PHYSICAL SYSTEM WITH QUALITATIVELY UNCERTAIN DYNAMICS [J].
SOMMERER, JC ;
OTT, E .
NATURE, 1993, 365 (6442) :138-140