Prediction of Microstructure Evolution for Additive Manufacturing of Ti-6Al-4V

被引:13
作者
Yang, Xinyu [1 ,2 ,3 ]
Barrett, Richard A. [1 ,2 ,3 ]
Tong, Mingming [1 ,2 ,3 ]
Harrison, Noel M. [1 ,2 ,3 ]
Leen, Sean B. [1 ,2 ,3 ]
机构
[1] NUI Galway, Form Adv Mfg Res Ctr I, Galway H91 HX31, Ireland
[2] NUI Galway, Mech Engn, Galway H91 HX31, Ireland
[3] NUI Galway, Ryan Inst Environm Marine & Energy Res, Galway H91 HX31, Ireland
来源
23RD INTERNATIONAL CONFERENCE ON MATERIAL FORMING | 2020年 / 47卷
基金
爱尔兰科学基金会;
关键词
Additive manufacturing; Laser beam powder bed fusion; Microstructure; Phase transformation; Dislocation density; MARTENSITE; BEHAVIOR; FATIGUE; MODEL;
D O I
10.1016/j.promfg.2020.04.170
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A key challenge for successful exploitation of additive manufacturing (AM) across a broad range of industries is the development of fundamental (PBF-LB) is identified as a key process for manufacture of metallic AM components. Ti-6Al-4V alloy is an important metal alloy for numerous microstructure prediction in PBF-LB manufacturing of Ti-6Al-4V, primarily focused on solid-state phase transformation and dislocation density evolution. The motivation is to quantify microstructure variables which control mechanical behavior, including tensile strength and ductility. A finite element (FE) based model of the process is adopted for thermal history prediction. Phase transformation kinetics for transient non-isothermal conditions are adopted and implemented within a stand-alone code, based on the FE-predicted thermal histories of sample material points. The evolution and spatial variations of phase fractions, a lath width and dislocation density are presented, to provide an assessment of the resulting microstructure-sensitivity of mechanical properties. (c) 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) Peer-review under responsibility of the scientific committee of the 23rd International Conference on Material Forming.
引用
收藏
页码:1178 / 1183
页数:6
相关论文
共 50 条
[31]   Integrated melt pool and microstructure control for Ti-6Al-4V thin wall additive manufacturing [J].
Gockel, J. ;
Fox, J. ;
Beuth, J. ;
Hafley, R. .
MATERIALS SCIENCE AND TECHNOLOGY, 2015, 31 (08) :912-916
[32]   Effect of Surface Roughness on Fatigue Strength of Ti-6Al-4V Alloy Manufactured by Additive Manufacturing [J].
Nakatani, Masanori ;
Masuo, Hiroshige ;
Tanaka, Yuzo ;
Murakami, Yukitaka .
FATIGUE DESIGN 2019, INTERNATIONAL CONFERENCE ON FATIGUE DESIGN, 8TH EDITION, 2019, 19 :294-301
[33]   Role of microstructure heterogeneity on deformation behaviour in additive manufactured Ti-6Al-4V [J].
Cao, Sheng ;
Meng, Liju ;
Liu, Hongyu ;
Zou, Yichao ;
Smith, Albert ;
Wu, Xinhua ;
Donoghue, Jack ;
Thomas, Rhys ;
Preuss, Michael ;
Lunt, David .
MATERIALIA, 2022, 26
[34]   Investigation of formation, microstructure and hardness of Ti-6Al-4V single tracks via Joule-fused filament additive manufacturing [J].
Jiawen, Lv ;
Li, Bobo ;
Li, Zhanxin ;
Chen, Yitao ;
Liu, Jingchi ;
Lu, Bingheng .
RAPID PROTOTYPING JOURNAL, 2025, 31 (03) :522-532
[35]   Effect of germanium alloying on microstructure and properties of Ti-6Al-4V alloy fabricated by additive manufacturing [J].
Changfu Li ;
Jiaqi Bu ;
Xiangming Wang ;
Guang Yang .
Applied Physics A, 2023, 129
[36]   Microstructure Evolution and Abrasive Wear Behavior of Ti-6Al-4V Alloy [J].
Hadke, Shreyash ;
Khatirkar, Rajesh K. ;
Shekhawat, Satish K. ;
Jain, Shreyans ;
Sapate, Sanjay G. .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2015, 24 (10) :3969-3981
[37]   Residual Stress and Microstructure of a Ti-6Al-4V Wire Arc Additive Manufacturing Hybrid Demonstrator [J].
Mishurova, Tatiana ;
Sydow, Benjamin ;
Thiede, Tobias ;
Sizova, Irina ;
Ulbricht, Alexander ;
Bambach, Markus ;
Bruno, Giovanni .
METALS, 2020, 10 (06)
[38]   Effect of normalizing temperature on microstructure and properties of Ti-6Al-4V fabricated by arc additive manufacturing [J].
Xu G. ;
Liu J. ;
Chen D. ;
Ma R. ;
Su Y. .
Hanjie Xuebao/Transactions of the China Welding Institution, 2020, 41 (01) :39-43
[39]   Microstructure Evolution and Dynamic Mechanical Properties of Laser Additive Manufacturing Ti-6Al-4V Under High Strain Rate [J].
Wang T. ;
Zhu L. ;
Wang C. ;
Liu M. ;
Wang N. ;
Qin L. ;
Wang H. ;
Lei J. ;
Tang J. ;
Wu J. .
Journal of Beijing Institute of Technology (English Edition), 2020, 29 (04) :568-580
[40]   NEW APPROACH FOR MANUFACTURING TI-6AL-4V [J].
Markovsky, P. E. ;
Kovalchuk, D. V. ;
Janiszewski, J. ;
Fikus, B. ;
Savvakin, D. G. ;
Stasiuk, O. O. ;
Oryshych, D. V. ;
Skoryk, M. A. ;
Nevmerzhytskyi, V. I. ;
Bondarchuk, V. I. .
USPEKHI FIZIKI METALLOV-PROGRESS IN PHYSICS OF METALS, 2023, 24 (04) :741-763