E-CHARACTERISTIC POLYNOMIALS OF TENSORS

被引:0
作者
Li, An-Min [1 ]
Qi, Liqun [2 ]
Zhang, Bin [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
关键词
E-eigenvalues; tensors; E-characteristic polynomials; eigenpair equivalence class; irregularity; EIGENVALUES; RANK;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the coefficients of the E-characteristic polynomial of a tensor are orthonormal invariants of that tensor. When the dimension is 2, some simplified formulas of the E-characteristic polynomial are presented. A resultant formula for the constant term of the E-characteristic polynomial is given. We prove that both the set of tensors with infinitely many eigenpairs and the set of irregular tensors have codimension 2 as subvarieties in the projective space of tensors. This makes our perturbation method workable. By using the perturbation method and exploring the difference between E-eigenvalues and eigenpair equivalence classes, we present a simple formula for the coefficient of the leading term of the E-characteristic polynomial when the dimension is 2.
引用
收藏
页码:33 / 53
页数:21
相关论文
共 24 条
[1]  
[Anonymous], 1998, USING ALGEBRAIC GEOM, DOI DOI 10.1007/978-1-4757-6911-1
[2]  
Balan V., 2010, APPL SCI, V12, P20
[3]  
Balan V., 2010, GEOMETRIC APPROACHES, V21, P119
[4]  
Balan V., 2008, HYPERCOMPLEX NUMBERS, V2, P101
[5]   Spectra of symmetric tensors and m-root Finsler models [J].
Balan, Vladimir .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (01) :152-162
[6]  
Bloy L, 2008, LECT NOTES COMPUT SC, V5241, P1, DOI 10.1007/978-3-540-85988-8_1
[7]  
Cartwright D., LIN ALG APP IN PRESS
[8]   On eigenvalue problems of real symmetric tensors [J].
Chang, K. C. ;
Pearson, Kelly ;
Zhang, Tan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (01) :416-422
[9]  
Gelfand I. M., 1994, DISCRIMANTS RESULTAN
[10]   The geometric measure of multipartite entanglement and the singular values of a hypermatrix [J].
Hilling, Joseph J. ;
Sudbery, Anthony .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (07)