Bilinear Fourier integral operators

被引:11
作者
Grafakos, Loukas [1 ]
Peloso, Marco M. [2 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
基金
美国国家科学基金会;
关键词
Multilinear operators; Fourier integral operators;
D O I
10.1007/s11868-010-0011-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the boundedness of bilinear Fourier integral operators on products of Lebesgue spaces. These operators are obtained from the class of bilinear pseudodifferential operators of Coifman and Meyer via the introduction of an oscillatory factor containing a real-valued phase of five variables Phi( x, y(1), y(2), xi(1), xi(2)) which is jointly homogeneous in the phase variables (xi(1), xi(2)). For symbols of order zero supported away from the axes and the antidiagonal, we show that boundedness holds in the local-L-2 case. Stronger conclusions are obtained for more restricted classes of symbols and phases.
引用
收藏
页码:161 / 182
页数:22
相关论文
共 21 条
[1]  
[Anonymous], LECT NOTE SERIES
[2]  
[Anonymous], 1993, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals
[3]  
[Anonymous], 1982, INTRO PSEUDODIFFEREN
[4]   Boundedness of Bergman projections on tube domains over light cones [J].
Bekollé, D ;
Bonami, A ;
Peloso, MM ;
Ricci, F .
MATHEMATISCHE ZEITSCHRIFT, 2001, 237 (01) :31-59
[5]  
Bernicot F., ADV MATH IN PRESS
[6]  
Coifman R., 1978, Ann. Inst. Fourier (Grenoble), V28, P177
[7]  
Coifman R.R., 1979, ASTERISQUE
[8]   COMMUTATORS OF SINGULAR INTEGRALS AND BILINEAR SINGULAR INTEGRALS [J].
COIFMAN, RR ;
MEYER, Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 212 (OCT) :315-331
[9]  
Duistermaat J. J., 1996, PROGR MATH, V130
[10]  
ESKIN GI, 1970, MATH USSR SB, V11, P539