An optimal variational mode decomposition for rolling bearing fault feature extraction

被引:50
|
作者
Wei, Dongdong [1 ]
Jiang, Hongkai [1 ]
Shao, Haidong [1 ]
Li, Xingqiu [1 ]
Lin, Ying [1 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
rolling bearing; optimal variational mode decomposition; fault feature extraction; envelope entropy; whale optimization algorithm; DEEP BELIEF NETWORK; DIAGNOSIS; PACKET; EEMD;
D O I
10.1088/1361-6501/ab0352
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rolling bearings usually work in tough conditions, which makes the collected vibration signals complex and the fault features weak. Hence, fault feature extraction methods for rolling bearings have become a research focus. In this paper, a new method termed optimal variational mode decomposition (VMD) is proposed to extract rolling bearing fault features. Firstly, since envelope entropy is very sensitive to fault signal features, envelope entropy is used as a fitness function, which is an objective function for the whale optimization algorithm (WOA). Secondly, the WOA has numerous merits, such as simple operation, fewer adjustment parameters and a strong ability for jumping out of the local optimum, and it is applied to the optimization of VMD. Finally, intrinsic mode function components are processed through a Teager energy operator. The proposed method is employed to analyze the experimental signal collected from rolling bearings. The comparison results show that the proposed method is more effective and demonstrates superiority over empirical mode decomposition, local mean decomposition and wavelet packet decomposition.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Rolling Bearing Fault Feature Extraction Using Chirplet Decomposition Based on Genetic Algorithm
    Lin, Ying
    Jiang, Hongkai
    Hu, Yanan
    Wei, Dongdong
    2018 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2018, : 79 - 84
  • [22] Rolling Bearing Fault Diagnosis Based on Variational Mode Decomposition and Permutation Entropy
    Tang, Guiji
    Wang, Xiaolong
    He, Yuling
    Liu, Shangkun
    2016 13TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2016, : 626 - 631
  • [23] A Novel Empirical Variational Mode Decomposition for Early Fault Feature Extraction
    Xu, Bo
    Li, Huipeng
    IEEE ACCESS, 2022, 10 : 134826 - 134847
  • [24] Sparse decomposition based on ADMM dictionary learning for fault feature extraction of rolling element bearing
    Tong, Qingbin
    Sun, Zhanlong
    Nie, Zhengwei
    Lin, Yuyi
    Cao, Junci
    JOURNAL OF VIBROENGINEERING, 2016, 18 (08) : 5204 - 5216
  • [25] Feature Extraction of Rolling Bearing Fault Diagnosis
    Sun Lijie
    Zhang Li
    Yang Yongbo
    Zhang Dabo
    Wu Lichun
    DIGITAL MANUFACTURING & AUTOMATION III, PTS 1 AND 2, 2012, 190-191 : 993 - 997
  • [26] Feature extraction method of rolling bearing fault based on singular value decomposition-morphology filter and empirical mode decomposition
    Tang B.
    Jiang Y.
    Zhang X.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2010, 46 (05): : 37 - 42+48
  • [27] Rolling Bearing Fault Diagnosis Based on Successive Variational Mode Decomposition and the EP Index
    Guo, Yuanjing
    Yang, Youdong
    Jiang, Shaofei
    Jin, Xiaohang
    Wei, Yanding
    SENSORS, 2022, 22 (10)
  • [28] Rolling bearing fault analysis based on variational mode decomposition and multiscale arrangement entropy
    Yu, Shijun
    Liu, Haorui
    Zhu, Hengwei
    Hu, Kai
    Liu, Yanxu
    JOURNAL OF VIBROENGINEERING, 2024, 26 (06) : 1301 - 1316
  • [29] Variational mode decomposition method and its application on incipient fault diagnosis of rolling bearing
    Tang G.-J.
    Wang X.-L.
    Wang, Xiao-Long (wangxiaolong0312@126.com), 1600, Nanjing University of Aeronautics an Astronautics (29): : 638 - 648
  • [30] Fault feature extraction for rolling bearings based on parameter-adaptive variational mode decomposition and multi-point optimal minimum entropy deconvolution
    Zhou, Xiangyu
    Li, Yibing
    Jiang, Li
    Zhou, Li
    MEASUREMENT, 2021, 173