An optimal variational mode decomposition for rolling bearing fault feature extraction

被引:50
|
作者
Wei, Dongdong [1 ]
Jiang, Hongkai [1 ]
Shao, Haidong [1 ]
Li, Xingqiu [1 ]
Lin, Ying [1 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
rolling bearing; optimal variational mode decomposition; fault feature extraction; envelope entropy; whale optimization algorithm; DEEP BELIEF NETWORK; DIAGNOSIS; PACKET; EEMD;
D O I
10.1088/1361-6501/ab0352
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rolling bearings usually work in tough conditions, which makes the collected vibration signals complex and the fault features weak. Hence, fault feature extraction methods for rolling bearings have become a research focus. In this paper, a new method termed optimal variational mode decomposition (VMD) is proposed to extract rolling bearing fault features. Firstly, since envelope entropy is very sensitive to fault signal features, envelope entropy is used as a fitness function, which is an objective function for the whale optimization algorithm (WOA). Secondly, the WOA has numerous merits, such as simple operation, fewer adjustment parameters and a strong ability for jumping out of the local optimum, and it is applied to the optimization of VMD. Finally, intrinsic mode function components are processed through a Teager energy operator. The proposed method is employed to analyze the experimental signal collected from rolling bearings. The comparison results show that the proposed method is more effective and demonstrates superiority over empirical mode decomposition, local mean decomposition and wavelet packet decomposition.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Application of Parameter Optimized Variational Mode Decomposition Method in Fault Feature Extraction of Rolling Bearing
    Liang, Tao
    Lu, Hao
    Sun, Hexu
    ENTROPY, 2021, 23 (05)
  • [2] An Improved Variational Mode Decomposition and Its Application on Fault Feature Extraction of Rolling Element Bearing
    An, Guoping
    Tong, Qingbin
    Zhang, Yanan
    Liu, Ruifang
    Li, Weili
    Cao, Junci
    Lin, Yuyi
    ENERGIES, 2021, 14 (04)
  • [3] FEATURE EXTRACTION OF ROLLING BEARING FAULT BASED ON ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND CORRELATION DIMENSION
    Zhao, Lei
    Zhou, Zude
    Yin, Yang
    Chen, Rong
    Liu, Quan
    Wei, Qin
    PROCEEDINGS OF THE ASME 9TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2014, VOL 2, 2014,
  • [4] Fault Feature Extraction Method for Rolling Bearings Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Variational Mode Decomposition
    Wang, Lijing
    Li, Hongjiang
    Xi, Tao
    Wei, Shichun
    SENSORS, 2023, 23 (23)
  • [5] Rolling element bearing fault feature extraction using an optimal chirplet
    Jiang, Hongkai
    Lin, Ying
    Meng, Zhiyong
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2018, 29 (10)
  • [6] Variable Filtered-Waveform Variational Mode Decomposition and Its Application in Rolling Bearing Fault Feature Extraction
    Li, Nuo
    Wang, Hang
    ENTROPY, 2025, 27 (03)
  • [7] Spectral variational mode extraction and its application in fault detection of rolling bearing
    Pang, Bin
    Zhang, Heng
    Cheng, Tianshi
    Sun, Zhenduo
    Shi, Yan
    Tang, Guiji
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2023, 22 (01): : 449 - 471
  • [8] Application of tentative variational mode decomposition in fault feature detection of rolling element bearing
    Gong, Tingkai
    Yuan, Xiaohui
    Yuan, Yanbin
    Lei, Xiaohui
    Wang, Xu
    MEASUREMENT, 2019, 135 : 481 - 492
  • [9] Rolling bearing fault feature extraction based on Daubechies wavelet decomposition
    Ding, Huazhao
    Sun, Yongjian
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 8645 - 8649
  • [10] Rolling bearing fault feature extraction using Adaptive Resonancebased Sparse Signal Decomposition
    Wang, Kaibo
    Jiang, Hongkai
    Wu, Zhenghong
    Cao, Jiping
    ENGINEERING RESEARCH EXPRESS, 2021, 3 (01):