Legendre Spectral Collocation Methods for Pantograph Volterra Delay-Integro-Differential Equations

被引:61
作者
Wei, Yunxia [2 ]
Chen, Yanping [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
Volterra delay-integro-differential equations; Legendre-collocation methods; Gauss quadrature formula; Convergence analysis; RUNGE-KUTTA METHODS; INTEGRODIFFERENTIAL EQUATIONS; STABILITY ANALYSIS; CONVERGENCE;
D O I
10.1007/s10915-012-9595-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the convergence properties of the Legendre spectral collocation methods when used to approximate smooth solutions of Volterra integro-differential equations with proportional (vanishing) delays. We provide a vigorous error analysis for the proposed methods. Furthermore, we prove that both the errors of approximate solutions and the errors of approximate derivatives decay exponentially in L (2)-norm and L (a)-norm. Some numerical experiments are given to confirm the theoretical results.
引用
收藏
页码:672 / 688
页数:17
相关论文
共 28 条
[1]   Spectral methods for pantograph-type differential and integral equations with multiple delays [J].
Ali, Ishtiaq ;
Brunner, Hermann ;
Tang, Tao .
FRONTIERS OF MATHEMATICS IN CHINA, 2009, 4 (01) :49-61
[2]  
Ali I, 2009, J COMPUT MATH, V27, P254
[3]  
[Anonymous], 1989, GEOMETRIC THEORY SEM
[4]  
Bernardi C., 1997, Handbook of Numerical Analysis, VV
[5]  
Brunner, 2010, 7 LECTIRES THEORY NU
[6]  
BRUNNER H, 1994, MATH COMPUT, V62, P581, DOI 10.1090/S0025-5718-1994-1213835-8
[7]  
Canuto C., 2006, SCIENTIF COMPUT, DOI 10.1007/978-3-540-30726-6
[8]   CONVERGENCE ANALYSIS OF THE JACOBI SPECTRAL-COLLOCATION METHODS FOR VOLTERRA INTEGRAL EQUATIONS WITH A WEAKLY SINGULAR KERNEL [J].
Chen, Yanping ;
Tang, Tao .
MATHEMATICS OF COMPUTATION, 2010, 79 (269) :147-167
[9]   Spectral methods for weakly singular Volterra integral equations with smooth solutions [J].
Chen, Yanping ;
Tang, Tao .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (04) :938-950
[10]   Continuous Runge-Kutta methods for neutral Volterra integro-differential equations with delay [J].
Enright, WH ;
Hu, M .
APPLIED NUMERICAL MATHEMATICS, 1997, 24 (2-3) :175-190