Performance variability of radiomics machine learning models for the detection of clinically significant prostate cancer in heterogeneous MRI datasets

被引:9
作者
Gresser, Eva [1 ]
Schachtner, Balthasar [1 ,2 ]
Stueber, Anna Theresa [1 ]
Solyanik, Olga [1 ]
Schreier, Andrea [3 ]
Huber, Thomas [4 ]
Froelich, Matthias Frank [4 ]
Magistro, Giuseppe [5 ]
Kretschmer, Alexander [5 ]
Stief, Christian [5 ]
Ricke, Jens [1 ]
Ingrisch, Michael [1 ]
Noerenberg, Dominik [4 ]
机构
[1] Ludwig Maximilians Univ Munchen, Univ Hosp, Dept Radiol, Munich, Germany
[2] German Ctr Lung Res DZL, Comprehens Pneumol Ctr CPC M, Munich, Germany
[3] Ludwig Maximilians Univ Munchen, Univ Hosp, Dept Otolaryngol, Munich, Germany
[4] Univ Med Ctr Mannheim, Dept Radiol & Nucl Med, Mannheim, Germany
[5] Ludwig Maximilians Univ Munchen, Univ Hosp, Dept Urol, Munich, Germany
关键词
Magnetic resonance imaging; radiomics; imaging biomarker; prostate cancer (PCa); prostate Imaging Reporting and Data System (PI-RADS); TRANSITION; DIAGNOSIS; FEATURES; SYSTEM;
D O I
10.21037/qims-22-265
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Radiomics promises to enhance the discriminative performance for clinically significant prostate cancer (csPCa), but still lacks validation in real-life scenarios. This study investigates the classification performance and robustness of machine learning radiomics models in heterogeneous MRI datasets to characterize suspicious prostate lesions for non-invasive prediction of prostate cancer (PCa) aggressiveness compared to conventional imaging biomarkers. Methods: A total of 142 patients with clinical suspicion of PCa underwent 1.5T or 3T biparametric MRI (7 scanner types, 14 institutions) and exhibited suspicious lesions [prostate Imaging Reporting and Data System (PI-RADS) score >= 3] in peripheral or transitional zones. Whole-gland and index-lesion segmentations were performed semi-automatically. A total of 1,482 quantitative morphologic, shape, texture, and intensity-based radiomics features were extracted from T2-weighted and apparent diffusion coefficient (ADC)-images and assessed using random forest and logistic regression models. Five-fold cross-validation performance in terms of area under the ROC curve was compared to mean ADC (mADC), PI-RADS and prostate-specific antigen density (PSAD). Bias mitigation techniques targeting the high-dimensional feature space and inherent class imbalance were applied and robustness of results was systematically evaluated. Results: Trained models showed mean area under the curves (AUCs) ranging from 0.78 to 0.83 in csPCa classification. Despite using mitigation techniques, high performance variability of results could be demonstrated. Trained models achieved on average numerically higher classification performance compared to clinical parameters PI-RADS (AUC =0.78), mADC (AUC =0.71) and PSAD (AUC =0.63). Conclusions: Radiomics models' classification performance of csPCa was numerically but not significantly higher than PI-RADS scoring. Overall, clinical applicability in heterogeneous MRI datasets is limited because of high variability of results. Performance variability, robustness and reproducibility of radiomics-based measures should be addressed more transparently in future research to enable broad clinical application.
引用
收藏
页码:4990 / +
页数:16
相关论文
共 41 条
[1]   Comparison of machine learning algorithms to predict clinically significant prostate cancer of the peripheral zone with multiparametric MRI using clinical assessment categories and radiomic features [J].
Bernatz, Simon ;
Ackermann, Joerg ;
Mandel, Philipp ;
Kaltenbach, Benjamin ;
Zhdanovich, Yauheniya ;
Harter, Patrick N. ;
Doering, Claudia ;
Hammerstingl, Renate ;
Bodelle, Boris ;
Smith, Kevin ;
Bucher, Andreas ;
Albrecht, Moritz ;
Rosbach, Nicolas ;
Basten, Lajos ;
Yel, Ibrahim ;
Wenzel, Mike ;
Bankov, Katrin ;
Koch, Ina ;
Chun, Felix K-H ;
Koellermann, Jens ;
Wild, Peter J. ;
Vogl, Thomas J. .
EUROPEAN RADIOLOGY, 2020, 30 (12) :6757-6769
[2]   Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer [J].
Bleker, Jeroen ;
Kwee, Thomas C. ;
Dierckx, Rudi A. J. O. ;
de Jong, Igle Jan ;
Huisman, Henkjan ;
Yakar, Derya .
EUROPEAN RADIOLOGY, 2020, 30 (03) :1313-1324
[3]   Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values [J].
Bonekamp, David ;
Kohl, Simon ;
Wiesenfarth, Manuel ;
Schelb, Patrick ;
Radtke, Jan Philipp ;
Goetz, Michael ;
Kickingereder, Philipp ;
Yaqubi, Kaneschka ;
Hitthaler, Bertram ;
Gaehlert, Nils ;
Kuder, Tristan Anselm ;
Deister, Fenja ;
Freitag, Martin ;
Hohenfellner, Markus ;
Hadaschik, Boris A. ;
Schlemmer, Heinz-Peter ;
Maier-Hein, Klaus H. .
RADIOLOGY, 2018, 289 (01) :128-137
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]   Automated Classification of Significant Prostate Cancer on MRI: A Systematic Review on the Performance of Machine Learning Applications [J].
Castillo T., Jose M. ;
Arif, Muhammad ;
Niessen, Wiro J. ;
Schoots, Ivo G. ;
Veenland, Jifke F. .
CANCERS, 2020, 12 (06) :1-13
[6]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[7]   Prostate Cancer Differentiation and Aggressiveness: Assessment With a Radiomic-Based Model vs. PI-RADS v2 [J].
Chen, Tong ;
Li, Mengjuan ;
Gu, Yuefan ;
Zhang, Yueyue ;
Yang, Shuo ;
Wei, Chaogang ;
Wu, Jiangfen ;
Li, Xin ;
Zhao, Wenlu ;
Shen, Junkang .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 49 (03) :875-884
[8]   Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer [J].
Drost, Frank-Jan H. ;
Osses, Daniel F. ;
Nieboer, Daan ;
Steyerberg, Ewout W. ;
Bangma, Chris H. ;
Roobol, Monique J. ;
Schoots, Ivo G. .
COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2019, (04)
[9]  
Eugster, 2008, TECHNICAL REPORT NUM
[10]   Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images [J].
Fehr, Duc ;
Veeraraghavan, Harini ;
Wibmer, Andreas ;
Gondo, Tatsuo ;
Matsumoto, Kazuhiro ;
Vargas, Herbert Alberto ;
Sala, Evis ;
Hricak, Hedvig ;
Deasy, Joseph O. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (46) :E6265-E6273