Architecture and self-assembly of theSARS-CoV-2 nucleocapsid protein

被引:7
作者
Ye, Qiaozhen [1 ]
West, Alan M. V. [1 ]
Silletti, Steve [2 ]
Corbett, Kevin D. [1 ,2 ,3 ]
机构
[1] Univ Calif San Diego, Dept Cellular & Mol Med, 9500 Gilman Dr,3206, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[3] Ludwig Inst Canc Res, La Jolla, CA USA
基金
美国国家卫生研究院;
关键词
coronavirus; COVID-19; crystal structure; nucleocapsid; SARS-CoV-2; C-TERMINAL DOMAINS; SARS CORONAVIRUS; DIMERIZATION DOMAIN; CRYSTAL-STRUCTURE; VIRUS; RIBONUCLEOPROTEIN; IDENTIFICATION; ASSOCIATION; MECHANISM; GS-5734;
D O I
10.1002/pro.3909
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The COVID-2019 pandemic is the most severe acute public health threat of the twenty-first century. To properly address this crisis with both robust testing and novel treatments, we require a deep understanding of the life cycle of the causative agent, the SARS-CoV-2 coronavirus. Here, we examine the architecture and self-assembly properties of the SARS-CoV-2 nucleocapsid protein, which packages viral RNA into new virions. We determined a 1.4 angstrom resolution crystal structure of this protein's N2b domain, revealing a compact, intertwined dimer similar to that of related coronaviruses including SARS-CoV. While the N2b domain forms a dimer in solution, addition of the C-terminal spacer B/N3 domain mediates formation of a homotetramer. Using hydrogen-deuterium exchange mass spectrometry, we find evidence that at least part of this putatively disordered domain is structured, potentially forming an alpha-helix that self-associates and cooperates with the N2b domain to mediate tetramer formation. Finally, we map the locations of amino acid substitutions in the N protein from over 38,000 SARS-CoV-2 genome sequences. We find that these substitutions are strongly clustered in the protein's N2a linker domain, and that substitutions within the N1b and N2b domains cluster away from their functional RNA binding and dimerization interfaces. Overall, this work reveals the architecture and self-assembly properties of a key protein in the SARS-CoV-2 life cycle, with implications for both drug design and antibody-based testing.
引用
收藏
页码:1890 / 1901
页数:12
相关论文
共 50 条
[41]   Principles Governing the Self-Assembly of Coiled-Coil Protein Nanoparticles [J].
Indelicato, Giuliana ;
Wahome, Newton ;
Ringler, Philippe ;
Mueller, Shirley A. ;
Nieh, Mu-Ping ;
Burkhard, Peter ;
Twarock, Reidun .
BIOPHYSICAL JOURNAL, 2016, 110 (03) :646-660
[42]   The SARS-CoV-2 nucleocapsid protein: its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics [J].
Wu, Wenbing ;
Cheng, Ying ;
Zhou, Hong ;
Sun, Changzhen ;
Zhang, Shujun .
VIROLOGY JOURNAL, 2023, 20 (01)
[43]   Unraveling the role of the nucleocapsid protein in SARS-CoV-2 pathogenesis: From viral life cycle to vaccine development [J].
El-Maradny, Yousra A. ;
Badawy, Moustafa A. ;
Mohamed, Kareem I. ;
Ragab, Renad F. ;
Moharm, Hamssa M. ;
Abdallah, Nada A. ;
Elgammal, Esraa M. ;
Rubio-Casillas, Alberto ;
Uversky, Vladimir N. ;
Redwan, Elrashdy M. .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 279
[44]   Development of a recombinant nucleocapsid protein-based ELISA for the detection of IgM and IgG antibodies to SARS-CoV-2 [J].
Ranjbar, Maryam ;
Asadi, Marzieh ;
Nourigorji, Marjan ;
Sarkari, Bahador ;
Mostafavi-Pour, Zohreh ;
Zomorodian, Kamiar ;
Shabaninejad, Zahra ;
Taheri-Anganeh, Mortaza ;
Maleksabet, Amir ;
Moghadami, Mohsen ;
Savardashtaki, Amir .
BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY, 2022, 69 (06) :2592-2598
[45]   SARS-CoV-2 nucleocapsid protein inhibits the PKR-mediated integrated stress response through RNA-binding domain N2b [J].
Aloise, Chiara ;
Schipper, Jelle G. ;
van Vliet, Arno ;
Oymans, Judith ;
Donselaar, Tim ;
Hurdiss, Daniel L. ;
de Groot, Raoul J. ;
van Kuppeveld, Frank J. M. .
PLOS PATHOGENS, 2023, 19 (08)
[46]   From Protein Corona to Colloidal Self-Assembly: The Importance of Protein Size in Protein-Nanoparticle Interactions [J].
Marichal, Laurent ;
Degrouard, Jeril ;
Gatin, Anouchka ;
Raffray, Nolwenn ;
Aude, Jean-Christophe ;
Boulard, Yves ;
Combet, Sophie ;
Cousin, Fabrice ;
Hourdez, Stephane ;
Mary, Jean ;
Renault, Jean-Philippe ;
Pin, Serge .
LANGMUIR, 2020, 36 (28) :8218-8230
[47]   Fabrication of the Self-Assembly Systems Based on Protein Molecules [J].
He Naipu ;
Lu Shengfang ;
Zhao Weigang ;
Du Xi ;
Huang Sikai ;
Wang Rongmin .
PROGRESS IN CHEMISTRY, 2014, 26 (2-3) :303-309
[48]   Inherent Variability in the Kinetics of Autocatalytic Protein Self-Assembly [J].
Szavits-Nossan, Juraj ;
Eden, Kym ;
Morris, Ryan J. ;
MacPhee, Cait E. ;
Evans, Martin R. ;
Allen, Rosalind J. .
PHYSICAL REVIEW LETTERS, 2014, 113 (09)
[49]   The utility of SARS-CoV-2 nucleocapsid protein in laboratory diagnosis [J].
Li, Xinwei ;
Xiong, Mengyuan ;
Deng, Qiaoling ;
Guo, Xiaobing ;
Li, Yirong .
JOURNAL OF CLINICAL LABORATORY ANALYSIS, 2022, 36 (07)
[50]   Physical principles of filamentous protein self-assembly kinetics [J].
Michaels, Thomas C. T. ;
Liu, Lucie X. ;
Meisl, Georg ;
Knowles, Tuomas P. J. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (15)