Low-temperature Al-Ge bonding for 3D integration

被引:8
作者
Crnogorac, Filip [1 ]
Pease, Fabian R. W. [1 ]
Birringer, Ryan P. [2 ]
Dauskardt, Reinhold H. [2 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2012年 / 30卷 / 06期
基金
美国国家科学基金会;
关键词
THIN-FILMS; SILICON; ADHESION; PERFORMANCE; DIFFUSION; DESIGN; SI;
D O I
10.1116/1.4762844
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low-temperature aluminum-germanium (Al-Ge) bonding has been investigated for monolithic three-dimensional integrated circuit (3DIC) applications. As upper layer devices of a monolithic 3DIC are fabricated in situ, a suitable technique for providing high-quality semiconducting material without inflicting damage to underlying circuits below is needed. Here, the authors demonstrate a method of attaching high-quality single-crystal Si (100) and Ge (100) islands (3-3000 mu m in size) onto amorphous SiO2 substrates using both eutectic (435 degrees C) and subeutectic (400 degrees C) Al-Ge bonding. The 30 min, 3DIC compatible process utilizes Al-Ge bilayer films as thin as 157 nm to form void-free bonds strong enough to withstand SmartCut (R) hydrogen splitting of the donor wafer. The fracture energy of the Al-Ge bond was measured to be G(C)=50.5 +/- 12.7 J/m(2), as measured by the double cantilever beam thin-film adhesion measurement technique. (C) 2012 American Vacuum Society. [http://dx.doi.org/10.1116/1.4762844]
引用
收藏
页数:7
相关论文
共 33 条
[1]  
[Anonymous], 1958, Constitution of Binary Alloys
[2]   3-D ICs: A novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration [J].
Banerjee, K ;
Souri, SJ ;
Kapur, P ;
Saraswat, KC .
PROCEEDINGS OF THE IEEE, 2001, 89 (05) :602-633
[3]   High yield four-point bend thin film adhesion testing techniques [J].
Birringer, Ryan P. ;
Chidester, Paula J. ;
Dauskardt, Reinhold H. .
ENGINEERING FRACTURE MECHANICS, 2011, 78 (12) :2390-2398
[4]   SILICON-ON-INSULATOR MATERIAL TECHNOLOGY [J].
BRUEL, M .
ELECTRONICS LETTERS, 1995, 31 (14) :1201-1202
[5]   Characteristics of germanium-on-insulators fabricated by wafer bonding and hydrogen-induced layer splitting [J].
Chao, Yu-Lin ;
Scholz, Roland ;
Reiche, Manfred ;
Goesele, Ulrich ;
Woo, Jason C. S. .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (11) :8565-8570
[6]   Process development and bonding quality investigations of silicon layer stacking based on copper wafer bonding [J].
Chen, KN ;
Chang, SM ;
Fan, A ;
Tan, CS ;
Shen, LC ;
Reif, R .
APPLIED PHYSICS LETTERS, 2005, 87 (03)
[7]  
Cmogorac F., 2009, IEEE INT 3D SYST INT
[8]   Nano-graphoepitaxy of semiconductors for 3D integration [J].
Crnogorac, F. ;
Witte, D. J. ;
Xia, Q. ;
Rajendran, B. ;
Pickard, D. S. ;
Liu, Z. ;
Mehta, A. ;
Sharma, S. ;
Yasseri, A. ;
Kamins, T. I. ;
Chou, S. Y. ;
Pease, R. F. W. .
MICROELECTRONIC ENGINEERING, 2007, 84 (5-8) :891-894
[9]   Semiconductor crystal islands for three-dimensional integration [J].
Crnogorac, F. ;
Wong, S. ;
Pease, R. F. W. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (06) :C6P53-C6P58
[10]   Pulsed laser techniques for nanographoepitaxy [J].
Crnogorac, F. ;
Witte, D. J. ;
Pease, R. F. W. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2008, 26 (06) :2520-2523