Biped Walking Stabilization on Soft Ground Based on Gait Analysis

被引:0
|
作者
Kang, Hyun-jin [1 ]
Hashimoto, Kenji [1 ]
Nishikawa, Kosuke [1 ]
Falotico, Egidio
Lim, Hun-ok
Takanishi, Atsuo
Laschi, Cecilia
Dario, Paolo
Berthoz, Alain
机构
[1] Waseda Univ, Grad Sch Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan
来源
2012 4TH IEEE RAS & EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL ROBOTICS AND BIOMECHATRONICS (BIOROB) | 2012年
关键词
SURFACE;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper describes a walking stabilization control on a soft ground based on gait analysis for a biped humanoid robot. There are many studies on gait analysis on a hard ground, but few physiologists analyze the walking ability of human beings on a soft ground. Therefore, we conducted anthropometric measurement using VICON motion capture system on a soft ground. By analyzing experimental results, we obtained three findings. The first finding is that step height tends to increase to avoid tripping on a soft ground but there are no significant differences in step length and step width. The second finding is that although the CoM amplitude increases in the vertical direction on a soft ground, there are no significant differences in the CoM trajectories in the lateral direction. The last finding is that the head is stabilized during walking not only on a hard ground but also on a soft ground. Based on these findings, we developed a novel walking stabilization control to stabilize the CoM motion in the lateral direction on a soft ground. Verification of the proposed control is conducted through experiments with a human-sized humanoid robot WABIAN-2R. The experimental videos are supplemented.
引用
收藏
页码:669 / 674
页数:6
相关论文
共 50 条
  • [1] Realization of Biped Walking on Soft Ground with Stabilization Control Based on Gait Analysis
    Hashimoto, Kenji
    Kang, Hyun-jin
    Nakamura, Masashi
    Falotico, Egidio
    Lim, Hun-ok
    Takanishi, Atsuo
    Laschi, Cecilia
    Dario, Paolo
    Berthoz, Alain
    2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 2064 - 2069
  • [2] Biped Walking Stabilization Based on Gait Analysis
    Hashimoto, Kenji
    Takezaki, Yuki
    Motohashi, Hiromitsu
    Otani, Takuya
    Kishi, Tatsuhiro
    Lim, Hun-ok
    Takanishi, Atsuo
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 154 - 159
  • [3] Walking stabilization based on gait analysis for biped humanoid robot
    Hashimoto, Kenji
    Takezaki, Yuki
    Lim, Hun-Ok
    Takanishi, Atsuo
    ADVANCED ROBOTICS, 2013, 27 (07) : 541 - 551
  • [4] Gait parameters analysis of biped walking robot based on flexible walking path
    Lu, Rongxin
    Chen, Jianfang
    Feng, Zhao
    Xiao, Xiaohui
    Xu, Jun
    Wu, Yi
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2014, 45 (10): : 3443 - 3449
  • [5] Design of Biped Walking Gait on Biped Robot
    Anh Nguyen Van Tien
    Hoai Quoc Le
    Thien Phuc Tran
    Tan Tien Nguyen
    2017 14TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2017, : 303 - 306
  • [6] Inverse kinetics analysis of the gait of the cattle bostaurus walking on soft ground
    Jilin University, Changchun 130025, China
    Nongye Jixie Xuebao, 2007, 10 (165-169):
  • [7] New method of desired gait synthesis for biped walking robot based on ground reaction force
    Zhang, Yongxue
    Tian, Haiying
    Qiang, Wenyi
    Fu, Peichen
    High Technology Letters, 2000, 6 (04) : 33 - 38
  • [9] Research on walking gait based on biped soccer robot
    Yang, Jing-Dong
    Hong, Bing-Rong
    Huang, Qing-Cheng
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2005, 37 (07): : 876 - 878
  • [10] EXPERIMENTAL ANALYSIS FOR PASSIVE AND DYNAMIC GAIT MEASURES OF BIPED WALKING
    Mummolo, Carlotta
    Mangialardi, Luigi
    Kim, Joo H.
    PROCEEDINGS OF THE ASME 5TH ANNUAL DYNAMIC SYSTEMS AND CONTROL DIVISION CONFERENCE AND JSME 11TH MOTION AND VIBRATION CONFERENCE, DSCC 2012, VOL 2, 2012, : 25 - 32