Adaptive Mesh Refinement in 2D-An Efficient Implementation in MATLAB

被引:24
|
作者
Funken, Stefan A. [1 ]
Schmidt, Anja [1 ]
机构
[1] Univ Ulm, Inst Numer Math, Helmholtzstr 20, D-89081 Ulm, Germany
关键词
MATLAB Program; Adaptive Mesh Refinement; Adaptivity; Finite Element Method; FINITE-ELEMENT METHODS; ALGORITHM;
D O I
10.1515/cmam-2018-0220
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the efficient implementation of various adaptive mesh refinements in two dimensions in MATLAB. We give insights into different adaptive mesh refinement strategies allowing triangular and quadrilateral grids with and without hanging nodes. Throughout, the focus is on an efficient implementation by utilization of reasonable data structure, use of MATLAB built-in functions and vectorization. This paper shows the transition from theory to implementation in a clear way and thus is meant to serve educational purposes of how to implement a method while keeping the code as short as possible - an implementation of an efficient adaptive mesh refinement is possible within 71 lines of MATLAB. Numerical experiments underline the efficiency of the code and show the flexible deployment in different contexts where adaptive mesh refinement is in use. Our implementation is accessible and easy-to-understand and thus considered to be a valuable tool in research and education.
引用
收藏
页码:459 / 479
页数:21
相关论文
共 50 条
  • [41] Stable Dynamical Adaptive Mesh Refinement
    Tomas Lundquist
    Jan Nordström
    Arnaud Malan
    Journal of Scientific Computing, 2021, 86
  • [42] Parallel algorithms for adaptive mesh refinement
    Jones, MT
    Plassmann, PE
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (03): : 686 - 708
  • [43] Adaptive mesh refinement for conformal hexahedralmeshes
    Nicolas, Gerald
    Fouquet, Thierry
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2013, 67 : 1 - 12
  • [44] Reinforcement Learning for Adaptive Mesh Refinement
    Yang, Jiachen
    Dzanic, Tarik
    Petersen, Brenden
    Kudo, Jun
    Mittal, Ketan
    Tomov, Vladimir
    Camier, Jean-Sylvain
    Zhao, Tuo
    Zha, Hongyuan
    Kolev, Tzanio
    Anderson, Robert
    Faissol, Daniel
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
  • [45] Adaptive mesh refinement for micromagnetics simulations
    Garcia-Cervera, Carlos J.
    Roma, Alexandre M.
    IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (06) : 1648 - 1654
  • [46] Visualization of adaptive mesh refinement data
    Weber, GH
    Hagen, H
    Hamann, B
    Joy, KI
    Ligocki, TJ
    Ma, KL
    Shalf, JM
    VISUAL DATA EXPLORATION AND ANALYSIS VIII, 2001, 4302 : 121 - 132
  • [47] Stable Dynamical Adaptive Mesh Refinement
    Lundquist, Tomas
    Nordstrom, Jan
    Malan, Arnaud G.
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 86 (03)
  • [48] Submodeling approach to adaptive mesh refinement
    Univ of Colorado, Boulder, United States
    AIAA J, 8 (1550-1554):
  • [49] ADAPTIVE MESH REFINEMENT FOR FACETED SHELLS
    BONET, J
    PICA, A
    PEIRO, J
    WOOD, RD
    COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1992, 8 (05): : 319 - 329
  • [50] Adaptive mesh refinement for characteristic codes
    Pretorius, F
    Lehner, L
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 198 (01) : 10 - 34