Imidazole-doped nanocrystalline cellulose solid proton conductor: synthesis, thermal properties, and conductivity

被引:38
作者
Tritt-Goc, J. [1 ]
Jankowska, I. [1 ]
Pogorzelec-Glaser, K. [1 ]
Pankiewicz, R. [2 ]
Aawniczak, P. [1 ]
机构
[1] Polish Acad Sci, Inst Mol Phys, M Smoluchowskiego 17, PL-60179 Poznan, Poland
[2] Adam Mickiewicz Univ, Fac Chem, Umultowska 89b, PL-61614 Poznan, Poland
关键词
Nanocrystalline cellulose; Imidazole; Synthesis of nanocomposites; Thermal properties; Impedance spectroscopy; Proton conductivity; FUEL-CELLS; COMPOSITE-MATERIAL; MICROCRYSTALLINE CELLULOSE; EXCHANGE MEMBRANES; NANOCOMPOSITES; PEMFCS; PERFORMANCE; POLYMERS; NAFION; STATE;
D O I
10.1007/s10570-017-1555-8
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
A new proton conducting material with a possible application as a membrane in fuel cells is synthesized. It is formed by nanocrystalline cellulose (NCC) doped with a different concentration of the imidazole molecules (Im) used as "dry" conducting species. The nanocomposites (NCC-Im) are obtained in the form of films. Their chemical composition, thermal properties, and the electric conductivity are determined by elementary and thermogravimetric analysis, differential scanning calorimetry and impedance spectroscopy methods, respectively. The nanocomposite (1.7NCC-Im) with the highest concentration of imidazole i.e. one Im per 1.7 glucose unit shows the highest electrical conductivity equal to 2.7 x 10(-2) S/m at 140 A degrees C. This value is about five orders of magnitude higher than that of the pure NCC film at this same temperature. The important feature is that it is obtained for nanocomposite under anhydrous conditions.
引用
收藏
页码:281 / 291
页数:11
相关论文
共 45 条
[1]   THE GROTTHUSS MECHANISM [J].
AGMON, N .
CHEMICAL PHYSICS LETTERS, 1995, 244 (5-6) :456-462
[2]   Plasticized starch/tunicin whiskers nanocomposites.: 1.: Structural analysis [J].
Anglès, MN ;
Dufresne, A .
MACROMOLECULES, 2000, 33 (22) :8344-8353
[3]   High Temperature Proton Conduction in Nanocellulose Membranes: Paper Fuel Cells [J].
Bayer, Thomas ;
Cunning, Benjamin V. ;
Selyanchyn, Roman ;
Nishihara, Masamichi ;
Fujikawa, Shigenori ;
Sasaki, Kazunari ;
Lyth, Stephen M. .
CHEMISTRY OF MATERIALS, 2016, 28 (13) :4805-4814
[4]  
Borjesson M., 2015, CRYSTALLINE NANOCELL
[5]   Alternatives toward proton conductive anhydrous membranes for fuel cells: Heterocyclic protogenic solvents comprising polymer electrolytes [J].
Celik, Sevim Unugur ;
Bozkurt, Ayhan ;
Hosseini, Seyed Saeid .
PROGRESS IN POLYMER SCIENCE, 2012, 37 (09) :1265-1291
[6]   Dispersion and absorption in dielectrics I. Alternating current characteristics [J].
Cole, KS ;
Cole, RH .
JOURNAL OF CHEMICAL PHYSICS, 1941, 9 (04) :341-351
[7]   Advanced materials for improved PEMFC performance and life [J].
Curtin, DE ;
Lousenberg, RD ;
Henry, TJ ;
Tangeman, PC ;
Tisack, ME .
JOURNAL OF POWER SOURCES, 2004, 131 (1-2) :41-48
[8]   Recent developments in proton exchange membranes for fuel cells [J].
Devanathan, Ram .
ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (01) :101-119
[9]   Nanocellulose: a new ageless bionanomaterial [J].
Dufresne, Alain .
MATERIALS TODAY, 2013, 16 (06) :220-227
[10]   Mechanisms of proton conductance in polymer electrolyte membranes [J].
Eikerling, M ;
Kornyshev, AA ;
Kuznetsov, AM ;
Ulstrup, J ;
Walbran, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (17) :3646-3662