Stress field and spin axis relaxation for inelastic triaxial ellipsoids

被引:23
作者
Breiter, S. [1 ]
Rozek, A. [1 ]
Vokrouhlicky, D. [2 ]
机构
[1] Adam Mickiewicz Univ, Fac Phys, Astron Observ Inst, PL-60286 Poznan, Poland
[2] Charles Univ Prague, Inst Astron, CR-18000 Prague 8, Czech Republic
关键词
methods: analytical; celestial mechanics; minor planets; asteroids:; general; TUMBLING ASTEROIDS; WOBBLING ASTEROIDS; DISSIPATION; COMETS; ENERGY; STATES; EULER; BODY;
D O I
10.1111/j.1365-2966.2012.21970.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A compact formula for the stress tensor inside a self-gravitating, triaxial ellipsoid in an arbitrary rotation state is given. It contains no singularity in the incompressible medium limit. The stress tensor and the quality factor model are used to derive a solution for the energy dissipation resulting in the damping (short-axis mode) or excitation (long axis) of wobbling. In the limit of an ellipsoid of revolution, we compare our solution with earlier ones and show that, with appropriate corrections, the differences in damping times estimates are much smaller than it has been claimed.
引用
收藏
页码:755 / 769
页数:15
相关论文
共 36 条
[1]  
[Anonymous], 1960, The Rotation of the Earth: A Geophysical Discussion
[2]  
[Anonymous], 1934, MATH THEORY ELASTICI
[3]  
[Anonymous], TREATISE ANAL DYNAMI
[4]   Yarkovsky-O'Keefe-Radzievskii-Paddack effect on tumbling objects [J].
Breiter, S. ;
Rozek, A. ;
Vokrouhlicky, D. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 417 (04) :2478-2499
[5]   ASTEROID NUTATION ANGLES [J].
BURNS, JA ;
SAFRONOV, VS .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1973, 165 (04) :403-411
[6]  
Byrd P.F., 1954, Handbook of elliptic integrals for engineers and physicists
[7]  
Chandrasekhar S., 1969, Ellipsoidal figures of equilibrium
[8]  
Chree C., 1895, Q J PURE APPL MATH, V27, P338
[9]  
Denisov G.G., 1987, AKAD NAUK SSSR IZVES, V6, P69
[10]  
DEPRIT A, 1993, J ASTRONAUT SCI, V41, P603