Finite Termination of Inexact Proximal Point Algorithms in Hilbert Spaces

被引:4
作者
Wang, J. H. [1 ]
Li, C. [2 ]
Yao, J. -C. [3 ,4 ]
机构
[1] Zhejiang Univ Technol, Dept Math, Hangzhou 310032, Zhejiang, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[3] Kaohsiung Med Univ, Ctr Fundamental Sci, Kaohsiung 80702, Taiwan
[4] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Finite termination; Inexact proximal point algorithms; Maximal monotone; Projected gradient method; WEAK SHARP MINIMA; VARIATIONAL INEQUALITY PROBLEM; MAXIMAL MONOTONE-OPERATORS; ERROR-BOUNDS; CONVERGENCE ANALYSIS; CONVEX-OPTIMIZATION; BANACH-SPACES; FIXED-POINTS; INCLUSIONS; PROGRAMS;
D O I
10.1007/s10957-014-0689-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the present paper, we study the finite termination of sequences generated by inexact proximal point algorithms for finding zeroes of a maximal monotone (set-valued) operator on a Hilbert space. Under some mild conditions, we get that a sequence generated by inexact proximal point algorithm stops after a finite number of iterations. Our results extend the corresponding results in Rockafellar (SIAM J Control Optim 14:877-898, 1976). In particular, for optimization problems, our results improve corresponding results in Ferris (Math Progr 50:359-366, 1991). As applications, we obtain finite termination of projected gradient method.
引用
收藏
页码:188 / 212
页数:25
相关论文
共 50 条
[41]   Four parameter proximal point algorithms [J].
Boikanyo, O. A. ;
Morosanu, G. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (02) :544-555
[42]   Stability of the fixed point property for Hilbert spaces [J].
Rambla-Barreno, F. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 509 (02)
[43]   Inexact accelerated high-order proximal-point methods [J].
Nesterov, Yurii .
MATHEMATICAL PROGRAMMING, 2023, 197 (01) :1-26
[44]   Inexact accelerated high-order proximal-point methods [J].
Yurii Nesterov .
Mathematical Programming, 2023, 197 :1-26
[45]   On nonlinear inexact Uzawa algorithms for stabilized saddle point problems [J].
Zhao-Zheng Liang ;
Guo-Feng Zhang .
Computational and Applied Mathematics, 2018, 37 :2129-2151
[46]   On nonlinear inexact Uzawa algorithms for stabilized saddle point problems [J].
Liang, Zhao-Zheng ;
Zhang, Guo-Feng .
COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02) :2129-2151
[47]   HYBRID ITERATIVE ALGORITHMS FOR A FINITE FAMILY OF NONEXPANSIVE MAPPINGS AND FOR A COUNTABLE FAMILY OF NONSPREADING MAPPINGS IN HILBERT SPACES [J].
Rugiano, Angela ;
Scardamaglia, Bruno ;
Wang, Shengua .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (08) :1593-1605
[48]   A proximal point method for the variational inequality problem in Banach spaces [J].
Burachik, RS ;
Scheimberg, S .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (05) :1633-1649
[49]   An Inexact Proximal-Type Method for the Generalized Variational Inequality in Banach Spaces [J].
LC Ceng ;
G Mastroeni ;
JC Yao .
Journal of Inequalities and Applications, 2007
[50]   SOME ALGORITHMS FOR SOLVING OPTIMIZATION PROBLEMS IN HILBERT SPACES [J].
Jung, Jong Soo .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (01) :21-35