Finite Termination of Inexact Proximal Point Algorithms in Hilbert Spaces

被引:4
作者
Wang, J. H. [1 ]
Li, C. [2 ]
Yao, J. -C. [3 ,4 ]
机构
[1] Zhejiang Univ Technol, Dept Math, Hangzhou 310032, Zhejiang, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[3] Kaohsiung Med Univ, Ctr Fundamental Sci, Kaohsiung 80702, Taiwan
[4] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Finite termination; Inexact proximal point algorithms; Maximal monotone; Projected gradient method; WEAK SHARP MINIMA; VARIATIONAL INEQUALITY PROBLEM; MAXIMAL MONOTONE-OPERATORS; ERROR-BOUNDS; CONVERGENCE ANALYSIS; CONVEX-OPTIMIZATION; BANACH-SPACES; FIXED-POINTS; INCLUSIONS; PROGRAMS;
D O I
10.1007/s10957-014-0689-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the present paper, we study the finite termination of sequences generated by inexact proximal point algorithms for finding zeroes of a maximal monotone (set-valued) operator on a Hilbert space. Under some mild conditions, we get that a sequence generated by inexact proximal point algorithm stops after a finite number of iterations. Our results extend the corresponding results in Rockafellar (SIAM J Control Optim 14:877-898, 1976). In particular, for optimization problems, our results improve corresponding results in Ferris (Math Progr 50:359-366, 1991). As applications, we obtain finite termination of projected gradient method.
引用
收藏
页码:188 / 212
页数:25
相关论文
共 50 条
[31]   On the diagonal proximal point algorithms [J].
Khatibzadeh, Hadi ;
Rahimi Piranfar, Mohsen ;
Rooin, Jamal .
OPTIMIZATION, 2025, 74 (03) :655-682
[32]   An inexact interior point proximal method for the variational inequality problem [J].
Burachik, Regina S. ;
Lopes, Jurandir O. ;
Da Silva, Geci J. P. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2009, 28 (01) :15-36
[33]   PROXIMAL POINT ALGORITHMS AND FOUR RESOLVENTS OF NONLINEAR OPERATORS OF MONOTONE TYPE IN BANACH SPACES [J].
Takahashi, Wataru .
TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (08) :1883-1910
[34]   Some unified algorithms for finding minimum norm fixed point of nonexpansive semigroups in Hilbert spaces [J].
Yao, Yonghong ;
Liou, Yeong-Cheng .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2011, 19 (01) :331-346
[35]   Hybrid Inertial Contraction Algorithms for Solving Variational Inequalities with Fixed Point Constraints in Hilbert Spaces [J].
Pham Ngoc Anh .
Acta Mathematica Vietnamica, 2022, 47 :743-753
[36]   Hybrid Inertial Contraction Algorithms for Solving Variational Inequalities with Fixed Point Constraints in Hilbert Spaces [J].
Pham Ngoc Anh .
ACTA MATHEMATICA VIETNAMICA, 2022, 47 (04) :743-753
[37]   Algorithms for approximating minimization problems in Hilbert spaces [J].
Yao, Yonghong ;
Kang, Shin Min ;
Liou, Yeong-Cheng .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (12) :3515-3526
[38]   ALGORITHMS CONSTRUCTION FOR NONEXPANSIVE MAPPINGS IN HILBERT SPACES [J].
Li, Mengqin ;
Yao, Yonghong ;
Liou, Yeong-Cheng ;
Kang, Shin Min .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2010, 11 (01) :35-43
[39]   Strong Convergence of Two Iterative Algorithms for Nonexpansive Mappings in Hilbert Spaces [J].
Yao, Yonghong ;
Liou, Yeong Cheng ;
Marino, Giuseppe .
FIXED POINT THEORY AND APPLICATIONS, 2009,
[40]   Proximal type algorithms involving linesearch and inertial technique for split variational inclusion problem in hilbert spaces with applications [J].
Kesornprom, Suparat ;
Cholamjiak, Prasit .
OPTIMIZATION, 2019, 68 (12) :2365-2391