Finite Termination of Inexact Proximal Point Algorithms in Hilbert Spaces

被引:4
作者
Wang, J. H. [1 ]
Li, C. [2 ]
Yao, J. -C. [3 ,4 ]
机构
[1] Zhejiang Univ Technol, Dept Math, Hangzhou 310032, Zhejiang, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[3] Kaohsiung Med Univ, Ctr Fundamental Sci, Kaohsiung 80702, Taiwan
[4] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Finite termination; Inexact proximal point algorithms; Maximal monotone; Projected gradient method; WEAK SHARP MINIMA; VARIATIONAL INEQUALITY PROBLEM; MAXIMAL MONOTONE-OPERATORS; ERROR-BOUNDS; CONVERGENCE ANALYSIS; CONVEX-OPTIMIZATION; BANACH-SPACES; FIXED-POINTS; INCLUSIONS; PROGRAMS;
D O I
10.1007/s10957-014-0689-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the present paper, we study the finite termination of sequences generated by inexact proximal point algorithms for finding zeroes of a maximal monotone (set-valued) operator on a Hilbert space. Under some mild conditions, we get that a sequence generated by inexact proximal point algorithm stops after a finite number of iterations. Our results extend the corresponding results in Rockafellar (SIAM J Control Optim 14:877-898, 1976). In particular, for optimization problems, our results improve corresponding results in Ferris (Math Progr 50:359-366, 1991). As applications, we obtain finite termination of projected gradient method.
引用
收藏
页码:188 / 212
页数:25
相关论文
共 50 条
[21]   The Developments of Proximal Point Algorithms [J].
Cai, Xing-Ju ;
Guo, Ke ;
Jiang, Fan ;
Wang, Kai ;
Wu, Zhong-Ming ;
Han, De-Ren .
JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2022, 10 (02) :197-239
[22]   Convergence of over-relaxed contraction-proximal point algorithm in Hilbert spaces [J].
Cui, Huanhuan ;
Ceng, Luchuan .
OPTIMIZATION, 2017, 66 (05) :793-809
[23]   Viscosity Projection Algorithms for Pseudocontractive Mappings in Hilbert Spaces [J].
Pan, Xiujuan ;
Kang, Shin Min ;
Kwun, Young Chel .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[24]   INEXACT PROXIMAL POINT METHODS FOR VARIATIONAL INEQUALITY PROBLEMS [J].
Burachik, Regina ;
Dutta, Joydeep .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (05) :2653-2678
[25]   Inexact Halpern-type proximal point algorithm [J].
Boikanyo, O. A. ;
Morosanu, G. .
JOURNAL OF GLOBAL OPTIMIZATION, 2011, 51 (01) :11-26
[26]   Inexact proximal point method with a Bregman regularization for quasiconvex multiobjective optimization problems via limiting subdifferentials [J].
Upadhyay, Balendu Bhooshan ;
Poddar, Subham ;
Yao, Jen-Chih ;
Zhao, Xiaopeng .
ANNALS OF OPERATIONS RESEARCH, 2025, 345 (01) :417-466
[27]   Strong convergence theorems for minimization, variational inequality and fixed point problems for quasi-nonexpansive mappings using modified proximal point algorithms in real Hilbert spaces [J].
Sow, Thierno Mohamadane Mansour .
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02) :511-526
[28]   Finite Convergence of the Proximal Point Algorithm for Variational Inequality Problems [J].
Matsushita, Shin-ya ;
Xu, Li .
SET-VALUED AND VARIATIONAL ANALYSIS, 2013, 21 (02) :297-309
[29]   Finite Convergence of the Proximal Point Algorithm for Variational Inequality Problems [J].
Shin-ya Matsushita ;
Li Xu .
Set-Valued and Variational Analysis, 2013, 21 :297-309
[30]   Super-Relaxed (η)-Proximal Point Algorithms, Relaxed (η)-Proximal Point Algorithms, Linear Convergence Analysis, and Nonlinear Variational Inclusions [J].
Agarwal, Ravi P. ;
Verma, Ram U. .
FIXED POINT THEORY AND APPLICATIONS, 2009,