Finite Termination of Inexact Proximal Point Algorithms in Hilbert Spaces

被引:4
|
作者
Wang, J. H. [1 ]
Li, C. [2 ]
Yao, J. -C. [3 ,4 ]
机构
[1] Zhejiang Univ Technol, Dept Math, Hangzhou 310032, Zhejiang, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[3] Kaohsiung Med Univ, Ctr Fundamental Sci, Kaohsiung 80702, Taiwan
[4] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Finite termination; Inexact proximal point algorithms; Maximal monotone; Projected gradient method; WEAK SHARP MINIMA; VARIATIONAL INEQUALITY PROBLEM; MAXIMAL MONOTONE-OPERATORS; ERROR-BOUNDS; CONVERGENCE ANALYSIS; CONVEX-OPTIMIZATION; BANACH-SPACES; FIXED-POINTS; INCLUSIONS; PROGRAMS;
D O I
10.1007/s10957-014-0689-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the present paper, we study the finite termination of sequences generated by inexact proximal point algorithms for finding zeroes of a maximal monotone (set-valued) operator on a Hilbert space. Under some mild conditions, we get that a sequence generated by inexact proximal point algorithm stops after a finite number of iterations. Our results extend the corresponding results in Rockafellar (SIAM J Control Optim 14:877-898, 1976). In particular, for optimization problems, our results improve corresponding results in Ferris (Math Progr 50:359-366, 1991). As applications, we obtain finite termination of projected gradient method.
引用
收藏
页码:188 / 212
页数:25
相关论文
共 50 条
  • [1] Finite Termination of Inexact Proximal Point Algorithms in Hilbert Spaces
    J. H. Wang
    C. Li
    J.-C. Yao
    Journal of Optimization Theory and Applications, 2015, 166 : 188 - 212
  • [2] On finite termination of an inexact Proximal Point algorithm?
    Patrascu, Andrei
    Irofti, Paul
    APPLIED MATHEMATICS LETTERS, 2022, 134
  • [3] Finite termination of the proximal point algorithm in Banach spaces
    Matsushita, Shin-ya
    Xu, Li
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (02) : 765 - 769
  • [4] PROXIMAL POINT ALGORITHMS ON HADAMARD MANIFOLDS: LINEAR CONVERGENCE AND FINITE TERMINATION
    Wang, Jinhua
    Li, Chong
    Lopez, Genaro
    Yao, Jen-Chih
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (04) : 2696 - 2729
  • [5] Inexact Proximal Point Methods in Metric Spaces
    Zaslavski, Alexander J.
    SET-VALUED AND VARIATIONAL ANALYSIS, 2011, 19 (04) : 589 - 608
  • [6] On relaxed and contraction-proximal point algorithms in hilbert spaces
    Wang, Shuyu
    Wang, Fenghui
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [7] Convergence analysis of inexact proximal point algorithms on Hadamard manifolds
    Jinhua Wang
    Chong Li
    Genaro Lopez
    Jen-Chih Yao
    Journal of Global Optimization, 2015, 61 : 553 - 573
  • [8] Convergence analysis of inexact proximal point algorithms on Hadamard manifolds
    Wang, Jinhua
    Li, Chong
    Lopez, Genaro
    Yao, Jen-Chih
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 61 (03) : 553 - 573
  • [9] FINITE TERMINATION OF THE PROXIMAL POINT ALGORITHM
    FERRIS, MC
    MATHEMATICAL PROGRAMMING, 1991, 50 (03) : 359 - 366
  • [10] A class of inexact variable metric proximal point algorithms
    Parente, L. A.
    Lotito, P. A.
    Solodov, M. V.
    SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (01) : 240 - 260